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LINEARIZED THEORY OF WIND-TUNNEL JET-BOUNDARY CORRECTIONS AND

GROUND EFFECT FOR VTOL-STOL AIRCRAFT

By }l^mtv H. HEYSON

SUMMARY

A linear_zed theory i._ ,tereloped to obtail_ iT_ter-

ferenee faetor._ for wiml tunlwl,_ and grmtnd e[feet.
The calculated re._ult._', presented in tabular form iu

NASA 7'eehnieal Notes 1)-033, D-93_, 17-935,

and D-936, indicate that the degree to which the
wake is deflected downward has a primary e[[ect on

the magnitude i( the interference. When the wake

i._ undefleeted the corrections are essentially the same
as those of classical theory. H'hen the wake is de-

flected seeerely downward, the eorreetion,_' are pri-
marify determined by the .floor 1( the wind tum_el.

Under these eolulitions, the corrections are, in general,
much larger than tho,_e given by previou._ly available

results. Because of deformations at the lower

boumtary of the .let, the eorr,!etiol_s for an open wind

tun_nel are ul_certain. Testing at low speeds and
high lift eoel'ficients i7_ opelt wind tumtels, therefore,
is not recomTne_uled.

Although the theory is developed expressly fl_r

sire.tie-element, vani,_hil_gly smaU models, method,_,

with ._ample caleulatiol_s, arc givea for extending the
results to multlelemeat aml.finite-span models.

The theory is at least partially verified by available

test data; however, complete verifieatiott would re-

quire a sub._tantially more detailed experimental
study.

INTRODUCTION

Attempts to combine the hovering or low-speed
capability of the helicopter with the high-speed

potentild of conventiomd aircraft have led to a

wide variety of proposed VTOI_--STOI_ configura-
tions. Almost every conceivable combination of

wings, rotors, rims, and jets has been considered.
Unfortunately lhe mutual interference between the

various elemeuts of the complete aircraft is usually

of such a magnitude that, in general, it is not pos-

sible to predict the performance of ,t given VTOL-

S'I'OI_ aircraft by completely amdyti('al means.
Thus, a reas(mably a('curate evah,atiolJ of the

,nerits of a V'I'OI_-S'I'OI_ (_'onliguralion will gen-
erally require wind-tunnel tests.

Wind-tunnel data, unless corrected for the

effects introduced by the presence of the walls, do
not necessarily eorrespou(l with the results which

would be obtained in flight. This fact has been

recognized for many years and the appropriate
corrections fur wings are well known as the result

of theoretical and experimental studies (refs. 1 to
6, for example). In the present case, however,

experiments (ref. 7) have ah'eady shown that the

required corrections for low-speed VTOL-STOL

tests are much larger than those usually applied
to wings.

There are, of course, several possible ways of
circumventing tJle problems of either large or

unknown wind-tunnel corrections. One way is to
test. only very small models in very large wind

tunnels. This procedure, when carried to ex-

tremes, may result in either an impossibly small

nlodel or in the requirement for a very large wind
tunnel which may not be available. In the latter
case, it may be possible to conduct the tests in t,he

return passage of the wind tu,mel, thus effectively

obtaining a larger, but lower speed, test section.

Unfortunately, wind tunnels are constructed and

adjusted so as to maintain steady uniform flow
0nly in the Lest section itself; consequently, the

flow in the return passage may be found quite

unsuitable for Lest purposes. At best, return-
passage testing presents the problem of an ex-

pensive and time-consuming calibration of the
return-passage fow.

1
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The ability to correct the wind-tunnel data to

free-air conditions greatly relaxes tile requirement

for a relatively large wind tunnel. Previous
attempts to correct data from low-speed VTOJ._-
STOL wind-tunnel tests have not shown the

degree of correlation necessary for acceptance of
tile present correction methods (ref. 7). These

attempts at correction, however, used only the

usual wind-tunnel wall corrections for wings.

Furthermore, only the lift contribution of the wing

was considered in the corrections on the assump-
tion that the corrections depend only on the so-

called "circulation" lift of the system. These
assumptions are untenable on both counts.

First, the representation of the wake, which is

assumed to pass directly downstream in tile
classical corrections (refs. 1 to 6), is entirely in-

adequate for VTOL-STOL models where the
wake may be deflected downward by as much as

90 ° . Second, since the entire lifting system

deflects air against the walls of tile wind tunnel,
the entire lift of the system must be considered.

The fundalnental requirement in developing
corrections for VTOL-STOL wind-tunnel tests is

to treat a wake which may be deflected substan-

tially downward from the horizontal. A recent

paper (ref. 8) treats precisely this problem in
computing corrections for a lifting rotor. One

portion of reference 8 is of particular interest in
the present problem; that is, the portion which
treats the case where the rotor is assumed to be

vanishingly small. This assumption, while sim-
plifying the mathematical treatment, retains tile

essential characteristic of the wake; that is, its

large detlection from the horizontal. When the

assuinption of small size is made, the rotor wake
is reduced to a semi-infinite string of point

doublets, which, when the wake is undeflected,
corresponds exactly to the customary representa-

tion of a small wing in a wind tunnel (refs. 1
and 8).

The present _malysis proceeds from this point to

consider the wake of any generalized liftiug

system to be represented by a semi-infinite string
of point doublets whose axes are tilted by some

angle related to tile lift and drag of the nmdel.
The results obtained in this maturer are directly

applicable, regardless of the physical configuration

of the model, provided that the model is reason-
ably small with respect to the wind-tunnel

dimensions. In the course of _he analysis, it

develops that there may be a significant longitudi-

nal component of jet-boundary interference as
well as the usual vertical interference. Botix

components are treated throughout the analysis.
Sufficient theoretical (ref. 8) and experimentM

(ref. 7) evidence has been accumulated to indicate
that the floor of the wind tunnel assumes an

increased importance when the wake is greatly

deflected. Thus, large changes in the correction

factors may be expected when the model is
moved either closer to or farther from the wind-

tunnel floor. Consequently, the effect of the
vertical placement of tile model in the wind tunnel
is examined in some detail. Sueil considerations

lead naturally into a study of ground effect as the

degenerate case of a wind-tunnel correction.

Therefore, grouud-effect corrections, as well as
corrections directly from the wind tunnel to ground

effect, are treated.
The distribution of wind-tunnel interference

along all three axes is also studied. Such informa-

tion is obviously needed for the longitudinal axis

if it is desired to correct the pitching moments
measured in the wind tunnel. These interference

distributions will also be required lnerely to

correct the performance data for cases of complex
models. Such cases are those in which discrete

lifting elements are disposed predominantly along
one or more axes. Perhaps the simplest examples

are: tandem rotors, wtfich require a knowledge of

the longitudinal interference distribution; side-by-
side rotors, which require a knowledge of the

lateral distribution; and unloaded rotor systems,

which require a knowledge of the vertical
distribution.

It will be observed that these distributions of

interference, in combination with suitably dis-

placed lifting-point positions, may be used to
determine, by superposition, tile corrections fox"

models of finite size. A system for such a treat-
merit is indicated herein and it is illustrated by

two sample cases. Aside from these cases, the

effect of size is also treated by studying tim
distribution of interference over uniformly loaded

lifting rotors. The latter results have been
obtained from the equations of reference 8.

The data of reference 7, which were obtained for
identical models in two different wind-tunnel test

sections, have been corrected by means of the

present theory in an effort to determine its validity.

The degree of improvement in correlation is
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shown by comparison of the corrected and D
uncorrected data for the two test sections.

Correction factors have been computed for a D_

vast variety of wind-tunnel configurations, pro- D,
portions, and mounting positions. Although a

substantial number of these factors are presented

graphically herein, the number of cases is such as
to preclude a complete presentation in this form.
Consequently, references 9 to 12 have been pre-

pared in order to present the complete set of h
calculated results in tabular form.

A prelim!nary account of the present study has
been prescllted in reference 13.

SYMBOLS

A

A¢

A_

AR

AT

B

c_

CD._

('L.c

c_

CT J:

e_

d

H

K

area, sq ft

tmmel-equivalent flow area in
ground effect, 4h _, sq ft L

momentum area of lifting L¢
system, sq ft m*

rotor-disk area, sq ft Mr

cross-sectional area of wind-

tunnel test section, 4BH, 21I_

sq ft

lateral distance from center of

model to right-hand side of

wind tunnel (viewed from

behind), ft
semiwidth of wind-tunnel test

section, ft

mean aerodynamic chord, ft
q

D

drag coefficient, q-_ q¢

corrected value of drag coefIi-
cient R

L s

lift coefficient, q--_ S

corrected value of lift coef-
u

ficient
Thrust

thrust coeIficieut, qS up

corrected value of thrust co-

efficient
?/,L

jet-momentum coefficient,

(Jct mass tlow)vj

qS Uo

corrected value of jet-momen-
tum coefficient

exit diameter of ducted fan, ft

iw

m, n, p, q, r, s, t
?b

total drag, lb; also diameter of

rotor or propeller, ft

corrected value of total drag

induced drag, positive rear-
ward, ft/sec (note that a

forward-directed longitudi-
nal thrust is considered

in this context as a negative
induced drag)

height of center of model
above wind-tunnel floor or

above ground, ft

semiheight of wind tunnel, ft
function related to induced

velocities of model

distance along model wake,

measured from model, ft
lift, lb

corrected value of lift, lb

strength of a doublet, ft_/sec
mass flow through wind

tunnel, pArV, slugs/sec

longitudinal mass flow due to
induced drag, pAmuo, slugs/
see

vertical mass flow due to

lift, pAmwo, slugs/see

integers (see eq. (23))
ratio of final induced veloci-

ties in far wake to initial

induced velocities at model

dynamic pressure, ½pV _, lb/sq
ft

corrected value of dynamic

pressure, tb/sq ft
rotor radius, ft

semispan of wing, ft
wing, propeller, or fan-exit

area, sq ft
longitudinal induced velocity,

positive rearward, ft/sec

longitudinal induced velocity

due to drag, positivo rear-
ward, ft/sec

longitudinal induced velocity

due to lift, positive rear-
ward, ft/sec

mean or momentum-theory

value of longitudinal in-
duced velocity at model,

positive rearward, ft/sec
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longitudinal induced velocity
for a semi-infinite wake,

positive rearward, ft/sec x',y',z'
total longitudinal interference

velocity, positive rearward,
ft/sec

longitudinal interference ve-

locity due to induced drag,
positive rearward, ft/sec

longitu(linal iutc,'fere,me ve-

locity due to lift, positive X,Y',Z
rearward, ft/sec

axial velocity at exit of jet, X',Y',Z'
ft/sec

wind-tuimel velocity, ft/sec a
corrected forward velocity,

ft/sec a_

vertical induced velocity, pos-
itive upward, ft/sec

vertical induced velocity due _a

to induced drag, positive
upward, ft/sec

reference velocity, positive _,

up,yard, _n_Am, ft/sec F

ve|'tic||l induced velocity due
to lift, positive upward, ft/
see

mean or momentum-theory _,D
value of vertical induced

velocity, positive upward,
ft/sec _i./_

vertical imluced velocity for
a semi-iniinite wake, posi-

tive upwnrd, ft/sec _i_.D
total vertical interference ve-

locity, positive upward, ft/

sec _,o,_

vertical interference velocity
due to induced drag, posi-

tive upwa,'d, ft/sec _"

vertical interference velocity

due to lift,, positive upward,
ft/sec

location of a point with re-

spect to X-, Y-, and Z-

axes, respectively (x meas-
ured positive rearward, y

measured positive to right
when viewed from behind

aud z measured positive

upward), ft

location of a poiut with

respect to X'-, Y'-, and

Z'-axes, respectively (x'
measured positive rear-

ward, y' measured positive
to right when viewed from

behind, and z' measured
positive upward), ft

Cartesian axes with origin at
center of model

Cartesian axes centered at

center of wind tunnel

angle of attack, radians un-
less otherwise noted

corrected angle of attack,
radians unless otherwise

noted

change in angle of attack due

to interference, radians un-
less otherwise noted

ratio of wind-tunnel width to

wind-tunnel height, B/II
circulation, ft2/sec

jet-boumla,'y correction, or

interfere|me, factor (gen-
eral)

interference factor for longi-
tudinal interference veloc-

ity due to drag
iuterference factor for longi-

tudimd interfere,me veloc-

ity due to lift
interference factor for vertical

interference velocity due to

drag
interference factor for vertical

interference velocity due to
lift

ratio of wind-tunnel semi-

height to height of model
|tbove wind-ttmuel lloor,

H/h
ratio of lateral distance be-

tween model center and

right-hand side of wall
(viewed from behind) to
se,niwidth of wind tunnel,

b/B
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0n net wake-<teflection angle in
forward flight, complement

of wake skew angle, deg

p mass density of air, slugs/cu
ft

ratio of rotor diameter or

total wing span to total
wind-tumml width, D/2B,
R/B, or s/B

_.. potential function for a semi-

infinite wake, ft2/sec

X wake skew angle, angle be-
tween Z-axis (negative di-
rection) and wake center

line, positive rearward, (leg

THEORY

GENERAL PLAN

The general phm of this analysis is to first find

the induced velocities in the space surrounding the
wake in free air. Then, by superposition, the
induced velocities are found for the wake and its

mirror image directly below the test-section floor

(the ground-effect image). Finally, superposi-
tion is used to obtain the correction factor for all

the tunnel walls. Many of the equations used

herein are derived in reference 8. In such cases,
only the final result is stated in the present paper.

WAKE IN FREE AIR

The wake, under tile assumption that the model

is small in comparison with the wind tmmel (see

ref. 8), is shown in tigure 1. It consists merely
of a tmiform distribution of point doublets along

a straight line which begins at the model and

z

¥ w

// L
(x,y,z} ",*-u

<,

FIOURI_ l.--Wake in free air.

"_x

extends to infinity. In general, the line is inclined

to the free stream by the net wake-deflection
angle 0., which is the complement of the wake

skew angle x. In conformity with reference 8,
the present work is derived in terms of x rather

than 0.. Since the net deIlcction angle may be a
more familiar quantity to VTOL-STOL designers,
computed results will be presented in terms of
both parameters.

The wake-doublet inclination angle will be

determined primarily by the lift-drag ratio at the

particular operating condition. For convenience,
the present report considem the longitudinal and

vertical doublet strength separately. Tim re-
quired velocities may then be found for each case
as a linear combinatiou of the velocities due Lo a

wake of longitudinal doublets and those due t_ a
wake of verLical doublets.

Wake of vertical doublets.--The potential function for a wake of vertical doublets of strength
din* •

is derived in reference 8 as
dl

din*r  +eos ]
L  -V2 j (1)

The vertical induced velocity at a point (x,y,z) is given by thc partial derivative of cquatioa (1)
with respect to z. Reference 8 shows this to be

din* r x2+y 2

(_/*+y_+z_+z cos x-x sin x) (x_+ y_+z_) _

z +c°s x_/x'_+ Y% Z'_ T _
--[(-v/z'_ + y2+ z_ + z cos x-x si,, x)-_,/z_ + y'_+ z_J J

(2)
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Similarly, the longitudhlal induced velocity at the point (x,y,z) is the partial derivative of _b.
with respect to x, or

din* I --_'gu®=-dl- (_x'+y'+z'+z cos x-x sin x)(x2+y'+z') 3''

(_+cos x_/_,+y,+_,)(_-si, x_/_,+y,+e)]
(_/za+y'+z'+z cosx-xsin ×)'(aa+/f+zgJ

(a)

Now, if dm*/dl is taken, as in reference 8, to bc

din* R 2 A,_
--d-g=wo-g=Wo (4)

and if equations (2) and (3) are nondimensionalized with respect to h, the height of the center of tile
model above the lower boundary of a whld tunnel, the vertical induced velocity may be expressed
as (note that 1/h=f/H)

where

Am (l" _,_.=_o_[-_,_ • _,,_)]

0a)'+0-_)'
H x 2

(Sa)

cosx_l. Hsinx][(fx ' y ' zy_"

Z X 2 y _ Z _ =_f _ :_/(___,)__(____)+(____A)
X 2 y 2 Z 2 Z X . X 2 y 2 Z 2

and, as a special case, whenx=90 °

_. x \2 / y\_

X ' y 2 Z = X

_)+(_)+(_)'
Note that in reference 8, f=l.0.

Similarly, the longitudinal induced velocity may be expressed as

A,_ x y_.=_o_[-_,)_(_,_,_/_)]

(5c)

(6a)
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where

7

z z 2 z .)J[
X 2 y 2 Z 2 Z X

and, as a special case, when x----90 °

z

(6c)

It will be observed that the elfective momentum area A,, of the lifting system has been substituted
for the rotor-disk area An of reference 8. It is clear from the derivation in that paper that this is

indeed the proper meaning to assign to this area. Notice that, for a rotor or for a propeller, An=Am.

Wake of longitudinal doublets.--Reference 8 gives the potential function for a wake of longitudinal

forward-directed doublets as (note tlmt the forward direction of the doublets corresponds to a drag or a
negative thrust)

din* x--sin x _/x2+y_ + z2

¢h®----- dl (_/x2+y2+z2+zcosx_zsiux)_/z2+y2_t_z2
(7)

From reference 8, the corresponding vertical velocity is

_m*[(w.=- 47- _/x-Wy2+z_+z
-_ (_+cosxg_+y,+_,) (z--sinx4_'+y2+_')7

cos_-_sin_) (z'+y'+_') _'' __-;_--___J
(8)

The correspondence between equations (3) and (8) can be noted immediately. As shown subse-

quently, however, this correspondence does not imply an equivalent correspondence between the
final correction factors.

The longitudhml induced velocity is then the partial derivative of ¢® with respect to x or

din* f" y2 + z2

u®------ d---i-"_ (_/x_+y2+z2q-z cos x--x sin x)(x2+y2+z2) 3n

F x--sin x_/x'+Y2+ z' 7'_
-L(&,-¥y,+p_oT_S-___V_¥y,+_LIJ (0)

For tile wake of longitudinal doublets, dm*/dl depends upon tile mean longitudinal induced velocity
uo rather than Ul)On Wo. Thus, take

din* A,_
-_-_-----uo_ (10)

Then, after nondimensionalizing equations (8) and (9) with respect'to h (again, note that 1/h=f/H),
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the following results are obtained

_.-___o£[__,_,-__,_-_,_,_,,_)] (,,.)
where

x x 2 y 2 / z\r'13/2
U_)J

_[__+co__/(__)'+0_)'+0;)'J[__-'"''_/(__)'+0_'_)+0_)]"
2 x 2 y 2 z

[_(_'H)2W(t'_/)2+(_'H)'WfH c°s x--t'H sinx] [(1"_)-t-(1"_)-t-(1"_)_

and, as a special case, when x=90 °

z

z rN

Lkr_)+U_) +tr_)j
(1 lc)

Also, tile longitudinal induced velocity may be expressed as

where

(12a)

/ y\2 / z \_

K(_'_, _'_, _'i/) [IJ(_.;_/)2+(_.__/)2+(_._),,+f_ cos x_fH sin x][(fH)+(r_)+(I'_)]
X X 2 y 2 Z 2 $12

f__si,,x_(_.__/),+(_._/),+(i._)2 12(12b)

and, as a special case, when x=90 °

;r

z r/-]
(12c)

WAKE AND IMAGE NEAR WIND-TUNNEL FLOOR

Wake of vertical doublets.--In the present analysis the wake is assumed to pass downward and
rearward in a straight line. In general, tile wake then intersects the floor at some point

behind the model. From this point rearward, the wake flows along the floor. In order to maintain

zero flow through tile floor, it is necessary to assume the existence of a mirror-image wake
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directly below the floor. Figure 2(a) shows the
real and mirror-image wake for a wake of vertical

doublets. It will be observed that the portions

of the real and image wakes along the floor merely
cancel each other. Noting this fact, the vertical

induced velocity due to lift for tile entire wake

system may be written, I)y SUlWrposition, as

Am z

where K is given by equation (5b), and the
longitudinal induced velocity may be written as

(14)

whore K is given l)y equal ion (6b).

Wake of longitudinal doublets.--The wake and

its mirror image are shown in figure 2(b) for a wake
of longitudinal doublets. Note that, when the

doublets are longitudinal, the wake and its

image along the tloor add rather than subtract.
The contribution of this portion of the wake may

be found by first setting x----90 ° in equations (11)

and (12) and then making the substitution

i- H----I" H--tan x"

(15)

/ 'L T
t

k_H Ion X-=, 1o1

° /

I- .,oox4 ,,
(a) Wake of vertical doublets,

(b) Wake of longitudinal doublets.

FmuaE 2.--Wake and image system for only the closed

wind-tunnel floor.

Thus, for a wake of longitudinal doublets near
the wind-Ltmnel floor, tlw vertical imlm'cd w, locity

due to drag may be written as

-K r_, r_,-r/i-2

+K _" --tanx, f_/,--f]]--I

-F2K)x._o(_ H--Lau x, _ _,_" _[--{-1)]} (lfi)

where K is given by equation (llb), and the
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longitudinal induced velocity due to drag may be
written as

_o=_o _ 7- _,

+K rN, r_,-tT/-2

z)--K _"H--tan x, --_'_--1

where K is given by equation (12b).

WAKEANDIMAGENEAROPEN LOWERBOUNDARY

If tile lower bomldary of the wind tunnel is open,

the induced velocities will differ from those given
in tbe preceding section because the image below

the boundary will be of the opposite sign. This

change is required in order to obtain a boundary
condition of a continuous pressure gradient across
the boundary.

Wake of vertical doublets.--The wake and image

system for a wake of vertical doublets near an
open lower boundary is shown in figure 3(a). It

will be observed that the effect of the portion of

the wake which trails along the floor does not

cancel the effect of the similar portion of the image

wake. Thus, the vertical induced velocity due
to lift is

A,,{ _22_ E y

--K(_H-- tan x, _"_, _'H3-1 )

, X y
"Jr-2K, x..0 (_'_-- tan x, f _, _'H-_ 1)_ ) (18)

where K is given by equation (Sb), and the longi-

tudinal induced velocity due to lift is

_ A., _2"r x

( )])+2Klx-_o. f H--ta,,x,fT],tH+l (19)

where K is givcll by e(tuation (6b).

Wake of longitudinal doublets.--The ('orre-
sponding wake and image pattern for longitudinal
doublets is shown in figure 3(b). Note that for

this case the effect of the wake along the boundary

does cancel the effect of the corresponding part of
Z

i Y '

¥ w

_-_H l'_r _._ (b)

(a) Wake of vertical doublets.

(b) Wake of longitudinal doublets.

Fmua_ 3.--Wake and image system for only the open

wind-tunnel floor.
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the image wake. Thus, the induced velocities
will be

WD= Uo Art l -- _

--K(_'H--tan x, _'__/,- _'H--1)] } (20)

where K is' given by equation (11 b), and the longi-

tudinal induced velocity due to drag is

where K is given by equation (12b).

WIND-TUNNEL JET-BOUNDARY CORRECTIONS

Three different wind-tunnel boundary configura-

tions, representative of ahnost all rectangular wind
tmmels now in operation, are considered in this

report. These are a comt)letely closed wind tun-

nel, a wind tunnel closed on the bottom only, and

a completely open wind tunnel. The image sys-
tems required to represent these wiml tulmels are

sho_Tl in ilgure 4. It may be seen that these image

systems are similar to those for wings in the clas-
sical theory (refs. 1 to 6). Images are reflected

across solid boundaries with opposite sign so as to

meet the requirement of zero normal velocity at
the boundaries, and images are reflected across

free boundaries with like sign so as to meet the

requirement of a continuous pressure gradient
across the boundaries.

Notice that the vertical distance from any image

to the origin is --4nil and that the corresponding
lateral distance is 7H(1--n)[1--(--1)_]--2m_,H.

Therefore, by superposition, from equations (18)

x x y yand (19) with the substitutions _----_, H_-H

-2m_'+,(1-,) [1-(-l)m], andH=H--4n ), the

-2 -I

2H
_i_.

Wind tunnel-"

Z

or i 2 3=m

{o1

(a) Closed wind tunnel.

-2 -I

Wind tunnel"

Z

i= n

h_(bO/ + -I

}

(b) Wind tunnel closed on bottom only.

FmuRz 4.--Central portion of image system representing

effect of wind-tunnel boundaries. Plus signs indicate

same direction of vertical doublets as wake in wind

tunnel.

interference velocities in the wind tumml are found

as

A,,
Aw,.=_w.,. _ Wo (22a)

A_
AUL-_ _.t, _ Wo (22b)

Am
AWD=_w'D _T uO (22c)

A_
Auo= a_.o "_T Uo (22d)
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where _ is given by

,--_-_,{ (,_[_,_ (-

_(_,,.i_?_,,_{___,.,+,{,__),,_(_,).,},__(__+_]
+_-,,.,_E0_,-,.,,,,_),_{5-_,,,,,+,(,-.),,-_-,)-,},-_(_,-+,]

+,{-_[(__,-_.,,_),__,__+,]-_-1_,_[_-_,__,-____.]
+(-l)'K[(_'F/--ta,,x),f_/,--_'h--1]+2sI{,.-.o[(_'h-tanx),_'h,_'h+l]} } (23)

The correct combination of K, p, q, r, s, and t for am,L, au.L, #.._, and a..a is given in tile following
table for the various wind-tunnel configurations:

Wind-tunnel configuration

Closed

Closed on bottom only

Open

Closed floor only (ground effect)

Open floor only

Closed

Closed on bottom only

Correction to

Free air

Free air

Free air

Free air

Free air

Ground effect

Ground effect

Correction
factor

_w,L

_w,L
5w,o
5w,v

_w,D

_Ip,L

5u.L
_w.D
_w.D

_w,L

_u,L
_w.D
_u.D

w,L

_u,L

$w,D

_w,L

_u.L
5_.D
3w,D

_w,L

$_.D
_,D

K from p q r • l
equations

(5) 0
(6) 0

(11) 0
(12) 0

(5)
(6)

(11)
(12)

(5)
(6)

(11)
(12)

(5)
(6)

(li)
(12)

(5)
(6)

(_)
(12)

(5)
(6)

(;l)
(12)

(5)
(6)

(12)

0 1 0 1
1 1 0 1
0 1 1 1
1 1 1 1

m+n 0 1 O 1
m+n 1 1 0 1
m+n 0 I 1 1
m+n 1 1 1 1

m 1 I I 1
n, 0 1 1 1
m 1 1 0 1
m 0 1 0 1

........ 0 0 0 1

........ l 0 0 1

........ 0 0 1 1

........ 1 0 1 1

........ 1 0 I 1

........ 0 0 1 1

........ 1 0 0 1

........ 0 0 0 1

0 0 1 0 0
0 1 1 0 0
0 0 1 1 0
0 1 1 1 0

m+n 0 1 0 0
m+n 1 1 0 0
m+n 0 1 1 0
m+n 1 1 1 0
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Z

-2 -I _?

- Pl 1

I _+ --t

[ h ,_/Or

[in_l
..0 I

Wind tunnel-'" _-2B-_H

I 2 5,m

- I=n

_-_y

--0

(cl

(c) Open wind tunnel.

FmURE 4.--Concluded.

For x=90 °, the wake never intersects the floor.

Thus, for this case, the second, fourth, fifth, sixth,

eighth, and ninth terms on the right-hand side of

equation (23) are zero and may be ignored.
It will be observed that the terms corresponding

to the wind tunnel and the image immediately
below it (m=n=O) are omitted from the summa-

tion and treated separately at the end of equation

(23). The term corresponding to the free-air
wake itself is omitted entirely since it is only the

inferference velocities which are of interest herein.
The terms o,_tside the summation of equation

(23) are precisely those necessary to represent the

interference velocities in ground effect. Thus, if

ground effect is to be computed, the summation is

set equal to zero for any wind-tunnel configura-
tion with a solid floor. The case of an open lower

boundary, or floor, has no analogy in free flight.

It is only used herein in discussing the results ob-
tained for the open wind tunnels.

It is occasionally desired to obtain wind-tunnel

data for conditions in ground effect. The proper
corrections are the_ those in which all terms after

the summation (those existing in ground effect)
are omitted. Alternatively, these correction fac-

tors may be obtai_ed as the difference between the
corresponding correction factors for the wind tun-
nel and for the wind-tunnel floor only.

GROUND EFFECT

It has been noted previously that the case of the
closed wind-tuiillel floor only is identical to ground

effect. Inspection or equations (5), (6), (11), (12),

and (23), however, shows that for this case the 6
factors are all functions of the wind-tunnel dimen-

sions, which, for all practical purposes, do not
exist. However, it will also be observed that the

parameter 5/_-2_,is only a function of height above

the (leer (or ground). Thus, for ground effect,

set, for example,

wL= £ _ -_ _ Wo (24)

Now note that

4BH
(25)

Therefore, equation (24) reduces to

-_-a wo
(26)

Similarly, for the other three interference
velocities

AU,. \t_.y] _ We (27)

uo (28)

A [_f,, .\ A.,
u.-_-Ik_) _ uo (29)

Equations (26) to (29), of course, refer to the
interference velocities at the center of lift

(x=y----z----O) when the model is a distance h
above the ground. The interference at other

points near the model may be obtained from the
tables of references 9 to 12 by noting that

x H x__. x (30a)
h----hH H

Y-- Y (30b)_-r B

z z (30c)

The coefficients _i/i-2_ nmy t)e obtained in closed
form for the center of lift. The deriw_tioa of the

closed-form expressiot,s for the interference veloci-

ties at the model in ground effect is presented in

632643 O--62---2
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appendix A. The results are then as follows:

AWL=--I (3 COS' x+l) A"2 wo

xcos3x+sinxeosx

+3 ta, We

Aw.=_(2si,lXcos3X--sinax,'osX--4cos'_X

' 2)Am--2 tall _ Uo

_u.---l(4sinxcos'X--3si,?x,'os'X

1 cos X \ Am

These interference factors are shown in figure 5(a)
for ground effect.

Since the model was assumed to be vanishingly
small in the analysis, it is necessary that the height

above the ground be reasonably large with respect
to the model dimensions. Reference 14, which

treats a similar case for lifting rotors, indicates that

severe changes in the interference velocities may be

.6

.4

.Z

0

_,2"-_- -,4

-.S

-I.0

-I.2

On, deg

90 80 70 60 50 40 50 20

I

_/_,,D ............

I
1/

J

// I

IO o

(a)

-1'40 tO 20 30 40 50 60 70 80 90

X, deg

(a) Closed boundary (ground effect).

FmuaE 5.--Boundary interference factors for only lower

wind-tumwl boundary.

encountered if this condition is not met. A

subsequent section of this l)aper will indicate a

(31) method of extending this analysis to include cases
in which tim height above the ground may be
small.

The case of an open tloor does not have a practi-
cal significance such as ground effect, but it will

(32) be used in discussing the results obtained for open

wind tunnels. Tile equations for tim correspond-
ing interference factors are derived in closed form

for tile center of lift in appendix B. These inter-

ference factors are shown in figure 5(b).(33)
APPLICATION OP RESULTS

Finding Uo, We, and x.--It will be observed
from equations (5), (6), (ll), (12), and (22) that

it is necessary to know Uo, We, and x for any given
(34) operating condition in the wind tunnel ill order

to solve for the interference velocities. Reference

15 presents a simple nomographic solution for

these quantities. The pertinent ch,trts are pre-
sented herein as figures 6 and 7. In order to use

these charts it is only necessary to know tim

On,deg

60 50 40 50 20 I0 0

-I.0--

-1.2 ,/-'/']

"I'40 I0 20 30 40 5O 6O 7O

x,deg

{b)

80 90

(b) Open boundary.

F[ouR_ 5.--Concluded.
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forward (or wind-tunnel) velocity, tile induced

drag-lift ratio, and a reference velocity wn
defined as

w,=--/ i (_s)
V npAm

where n is the ratio of the final imlu('cd velocities

ill the far wake to tile initial induced velocities

uo and We at tlle model. If tile corrections are

applied by machine data-reduction processes,
these charts amount to the simultaneous iterative

solution of the equations

Woy= 1 (36)

1 '/V+ D_\2

and

V V We
.... (37)
Wh 'U)o Wh

Then, tile mean value of the longitudinal induced
velocity is obtained as

D_
Uo=-£ We (38)

and the wake skew angle is obtained as

Ixl=eos-' (w__o'_' {39)
kwh/

V . D_
where x is positive if _----_o_>-_- and negative if

V D,

-%0<Z

Alternate form for interference velocities.--lf

the forward velocity is not actually zero, the

equations for the interference velocities may be
rewritten in a form more convenient for compu-

tational ptn'poses. Note, for example, that equa-

tions (22) may be rewritten as

aWL _ pAmwo x A¢_ (40)
_ w,L --_uw LpArV 'Mr

AuL _ pA,,wo x ]lI_ (41)
-V -=_''_ _ .... "M_

Z_WD , pA,,uo . AI=
V =°_'_' o-2Wv=_"_Vi-_ (42)

AUD - pA._uo x 5I=

-W=_,_,__ .... ,,M-;_ (43)

AERONAUTICS AND SPACE ADMINISTRATION

where M, is the vertical mass flow required to
obtain the given lift, .M_ is the longitudinal nmss

flow required to obtain the given drag, and Mr

is tile mass flow through the wind tunnel. Tile
advantage of using equations (40) to (43) is that

it is only necessary to deal with simple and easily

found ratios rather than tl,e actual physical
quantities; for example,

M,_ A,,/AT
Mr V/we (44)

and, with tile use of equation (38),

M. M_ D,

•-/_=i-7 L (45)

If the forward velocity is actually zero, it will,
of course, be necessary to use the more basic

forms given earlier.

Interference at model.--Having found the four

interference velocity ratios defined in equations
(40) to (43), it is evident that tile total interference

at tile model is given by

,Sw Aw_, l_/twa
-V=-V----W (4_)

and

AU AUL I_hU D (47)V =--W- ---V--

The solution to the problem could now be stated

in terms of a siufilarity viewpoint; that is, the
performance of the model in the wind tunnel is

equivalent to the performance in free air with an

increased rate of sink given by _w and an increased

velocity given by 5u.
Corrections to data.--Unfortunately, the data

from a usual wind-tunnel test are generally re-
quired for a level flight condition and not for a

rate of sink whictl cannot be predetermined. From

figure 8, it may be seen that, with respect to the

effective relative velocity in the wind tunnel, the

model is now operating at an angle of attack
given by

at----a-}-Aa (48a)

where

Aa----- tall- t __ AW ----tan-' Aw/V
_u

V+Au 1 + V

(48b)
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iesulfon_ force

Model

V Au

FIOVRE 8.--Sketch illustrating correction of forces,

velocities, and angles at model.

and at a new forward velocity given by

Vc= 4 (V + _xu)_+ (aw)_ (49a)

or in terms of.dynamic pressure

_----(1 ' hu\2' /Aw\2
q \ ÷V) -I-(-_) (49b)

Since lift and drag are always defined as being
perpendicular and parallel, respectively, to the

relative wind, it will tiler] be necessary to resolve
these components with respect to the new effective

velocity; that is,

Lc-----L cos Aa--D Sill _Xa (50a)

D_=L Sill ha+D cos aa (50b)

Finally, the lift and drag coclIicicnts may be

formed from the corrected lift and drag forces by

using the dynamic pressure given by equation
(49b). Notice that any other coefficients based

on dynamic pressure must also be foruled using

the corrected dynamic pressure. For example,

Cr
CT._=q/_ (51a)

and

c_ _--(_ (5_b)
' qdq

A sample case of application of corrections to test
data is worked out, step by step, ill appendix C.

OPEN BOUNDAR|ES AT LOW SPEEDS

it will be observed that the boundary eondi-

tion employed for the free boundaries in this

analysis depends upon the induced velocities be-

ing small in comparison with the wind-tunnel

velocity; that is, the shape of the free edges of
the jet is unaltered by the presence of the model.
For very low speeds, which correspond to low

skew angles, this condition is severely violated

since the induced effects may be large even when
the model is very small. This is particularly true
when the free boundary is the floor of the wind

tunnel. (See fig. 9.)

In the limiting case of hovering, the wind-

tunnel jet does not even exist and the open bound-
aries will have no effect whatever. (Note that

the presence of the test-chamber walls exterior to

the jet is ignored.) Under such llovering condi-
tions there will be no correction whatever to the

data obtained in a completely open wind tunnel.
Provided that the floor of a wind tunnel closed on

the bottom only can be assumed infinite in breadth,

the corrections at zero skew angle will correspond

to those obtained herein for the closed floor only
(with none of the free bomldaries considered).

At low forward speeds other than hovering, it
is assumed herein that the interference velocities

for the open wind tunnel will lie somewhere
between zero and those calculated for the com-

pletely open wind tunnel. Similarly, at low
forward speeds, it is assumed that the interference
velocities for the wind tunnel closed on the bottom

only will lie between those calculated for the

complete wind tunnel (closed bottom and three

open boundaries) and tllose calculated for only
tile closed floor of the wind tu|lnel (without COtl-

sideration of the three open boundaries). Tile

consequences of these assumptious are discussed

more completely in a subsequent section of tiffs

paper.
It shouhl also be noted that the present analysis

treats all wind tunnels on the assumption that

the wind-tunnel boundaries extend to infinity both
in front of and be]find the model. Reference 6

treats the case of wiled tunnels of finite test-section

length and shows that large effects may exist when
the test section is at least partly open. Such

effects exist in the present case as well; however,

inclusion of these effects is substantially beyond
the scope of the p|'esent study.

NUMERICAL CALCULATIONS

NuJacrical values of tim correction factors were
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L-58-214o

FLOURS 0.--Photograph of flow through bottom of an open wind tunnel caused by a rotor at low forward speed.

obtained by evaluating equation (23) on tile

digital computers at the Langley Reaserch Center
(IBM 704 and IBM 7090 electronic data proces-

sing systems). With each computer, the capacity

was such that it was possible to compute all four
correction factors for all seven cases treated by

equation (23) (28 answers in all) simultaneously.

In all cases, it was assumed that all images having
both n and m greater than 3 provided negligible

contributions. On the IBM 704 computer ap-
proximately 45 seconds were required for each

case, and on the IBM 7090 computer approxi-

mately 6 seconds were required for each case. The
IBM 7090 computer, as installed at the Langley

Research Center, is somewhat less complete thau
many commercial installations. It is estimated

that additional time savings on the order of 20

percent could be obtained with the complete

computer.

The entire numerical results are presented in

tabular form in references 9 to 12. (A major

portion of these results is preseuted graphically
in subsequent sections of this paper in order that

the general trends may be discussed.) The wind-

tunnel configurations treated in these tables are
completely closed, closed on the bottom only, and

colnpletely open. The closed-floor-only (ground

effect) and open-floor-only cases are also treated.
For those wind tunnels which are completely
closed and those which are closed on the bottom

only, corrections to ground effect are given. In

all cases, wind-tunnel width-height ratios _ of
0.5, 1.0, 1.5, amt 2.0 are considered. For laterally

centered models (_--1.0), the longitudimLl, lateral,
and vertical distributions of the interference

factors are given for ratios of semiheight to height
of model above floor f of 0.6, 0.7, 0.8, 1.0, 1.5, 2.0,

4.0, and 10.0. The lateral distribution of the
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interferencefactorsis given for models laterally

offsetso that _ is0.25,0.50,and 0.75 and simul-

taneously _" is 0.7, 1.0, 2.0, and 4.0. When
interferencefactors for other locations are re-

quired,they may be computed from the equations

derived earlierin thisreport.

RESULTS AND DISCUSSION

INTERFERENCE AT THE MODEL

The interference factors at tile model for use ill

correcting (!ate to free-air comlitions are presented

in figures 10 to 21. The correction factors for

correcting directly to a ground-effect comlition
are presented in figures 22 to 29.

Correctionsat x=90%--Exami_w limt the (.om-

pletely symmetrical cases Ire,ted herein; that is,
those cases where the model is centered (i'= 1.0,

n=l.0) in a completely symmetrical (either com-

pletely open or completely closed) wind tmmel.
For these cases, at x=90 °, symmetry can be used

to show that _f=.L, $_..m aml 5,,.,, must all be

idellticldly zero. (Actually, the tables of refs. 9
to 12 show small values which are indicative of

the accuracy of tile calculation.)

Now examine the remaining factor 5,_.L. The
correction resulting fi'om this factor is (from eq.
(40))

AWL, t_ AmW°
-_ = W.L Ar y (52)

For a simple wing, of se,,|ispan s, the momentum
area is

A,,=_rs 2 (5:9

Furthermore, from momentum considerations, the
lift is

L= prs2V(--2Wo) (54)
so that

--L - CLSV (55)
Wo=_= 4_rs2

Substitute equations (53) and (55) into equa-
tion (52), and then assume that 5w,_ is small in

comparison with V, to obtain

A(x_tan Ao_-----AWL=-5t_'L S
V 4 Ar (2 (56)

Equntion (56) may be compared with the classical

wind-tunnel corrections where tile wake is always

at x=90 °. The corroction from classical thoory is

S
a,_=_ _ c_ (57)

]t is evident from the comparison of equations (56)

aml (57) that, under these conditions, _,.,. when
divided by -4 coincides exactly with the eht.qsical

wind-tulmel correction factor. (Seeref. 8.) Thus,
for these cases, ttle present theory contains

exactly the older theory as a limiting case.
When the model is not mounted in tile center

of the tunnel (f#1.O) or when the tunnel bouml-

aries are tier completely s.yl|it,mtrica.l (for example,
the wind ttumel which is closed on the bottom

only), equations (52) to (57) still hold aml --_,_.L/4
still correspom[s to & On the other hat,l, the

other three correction factors are no longer always
zero at a skew angle of 90 ° . ltowcver, if the

speed is high enough, and if tile lift coefficient is

low enough, to achieve skew angles near 90 ° , then
Uo and We will both be small. Under such con-

ditions, the contributions of _._,, _.L, and _.o
to the total iatcrference at the model will be small

for the usual model nmunting heights. Thus, in

general, tile previously available correction factors

may be considered as nearly, although not
exactly, representing a limiting case of the present
analysis.

Effect of x and _'._Figures 10 to 21 illustrate

tile large dependence of tile correction factors upon
skew angle. In general, for model locations at or

below the center of the wiml tunnel, the correction

factors approach those calculated for only the

wind-tmmel tloor as the skew angle apl)roaches

zero. (This result mtly be noted directly in figs.
14 to .17 for the wind tu,me] closed on the bottom

only; in figs. 18 to 21 for the open wind tunnel;

and in figs. 22 to 25, where the differences between
the factors for the complete tutmel and those for

the tunnel floor only are shown for the closed wind
tunnel.) This trend is not as marked if the model
is mounted above the center of the tunnel since

the upper boundary, because of its closer prox-

imity, then has an increased effect.
The effect of the height at which the model is

mounted is extremely pronounced. Figures 10 to

21, in particular, show large differences in the
correction factors even when the vertical model

height is changed by as little as _6 of the total

height of the wind tunnel. (Compare i'=0.8 with
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?=1.0.) Thus the choice of model location offers

a powerful means of controlling the magnitude of
the corrections required ill any specific test. This

point is discussed in a subsequent section of this
paper.

Effect of %--It is evident from figures 10 to 29

that the correction factors become smaller as %

the ratio of wind-tunnel width to height, becomes

smaller. At very low wake skew angles, where the
corrections are ahnost the same as those for tile

floor only, the correction factors vary almost in

direct proportion to _,. it is generally physically
possible to mount a larger model in the wider wind
tunnels; however, some consideration must be

given to the magnitude of the corrections that may
be encountered if this is done.

Classical jet-boundary correction theory (for
example, ref. l) has pointed out several combina-

tions of wind-tunnel configuration and proportion
which lead to zero corrections for a small model.

It is notable that no combination of configuration
and proportions ti'eated herein leads to a zero-

correction tunnel for the entire range of skew angles.

MINIMIZING CORRECTIONS

In selecfing a model size and a wind tunnel for
any test, it shouht be borne in mi,ld that there is

no real substitute for a very small model in a very

large wind tunnel. This procedure is, of course,
not always possible, particularly when the choice

is restricted to models which may already be on
hand, or to wind tumlels in which testing time is
available" When model size and wind tunnel are

fixed by such considerations, at least two alterna-

tive means of reducing the correct.ions are still

available. These are discussed in the following
paragraphs.

Correction to ground effect.--The tirst means of

reducing the magmitudo of the boundary correc-

tions is to correct the data to the equivalent
ground-effect condition rather than to the free-air

condition. A comparison between figures 10 to

17 and figures 22 to 29 indicates that this procedure
leads to substantially smaller corrections at low

skew angles. This procedure is objectionable,
however, in at least one regard--namely, that

ground-effect data may ,lot be desirable. On tile

other hand, these corrections are obtained by
o,nitting the closest and therefore least accurate

image of the reflection system. Thus, when the

corrections are large, the corrections to ground
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effect are probably more accurate than the
corrections to free air.

If corrections to ground cffcct are only employed
at, the lowest speeds, which correspond to tran-

sition from hovering to forward flight, correction
to the ground-effect condition becomes less

objectionahle since i,l practice such flight con-
ditions will usually be encountered near the
ground.

Selection of vertical height in tunnel.--The

large effect of vertical height on the correction
factors affords an additional control over the

nmgnitude of tile correction factors. This is

illustrated in figure 30 for the case of a closed

wind tunnel with "x----2.0. The difference in

vertical height in figure 30 is only ]_ of the total

wind-tunnel height, which illustrates the powerful
nature of this means of control. For maximum

effectiveness, the range of skew angles under
which the tests will be conducted should be known

in advance so that the model height can be
chosen so as to minimize tile corrections in this

range of skew angles.

CHOICE OF WIND-TUNNEL CONFIGURATION

It has been noted previously that as the skew

angle approaches zero, the correction factors, for

models at or below the wind-tunnel centerline,
approach those for only the floor of tile wind
tmmel. As a consequence, there is little difference
between the calculated correction factors for the

closed and for the closed-on-the-bottom-only con-
figurations. Both approach nearly the same

corrections, ,lamely, those of the physically realiz-

able grouml-effect condition, as the forward speed

and skew angle approach zero.
In contrast, the correction iactors for an open

wind tunnel apllroach those for an open floor at

low skew angles. Unfortunately, an open floor

has no physical counterpart in practice. Further-
more, the correction factors for the open floor ara,
in general, substantially diffe,'ent from those for

ground effect. Cons(_queutly, correction to a
ground-effect condition leads to impossibly large
correction factors.

Correction to ground effect is not in itself a

vital matter; however, the effect of the free
boundaries at low speed is vital. As discussed
previously, the effect of the free "boundaries

vanishes as the forward speed vanishes. Thus,

at low speeds, the actual corrections for a wind
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tunnel closed on the bottom only are probably
between those for the complete wind tunnel and

those for ground effect. Since the differences
between these two sets of correction factors are

small, there will only be a small uncertainty

(figs. 14 to 17) in the proper values to use. For
it completely open wind tunnel at low speeds and

high lift coeflicients, the proper correction factors
probably lie between zero and those computed

for the complete wind tunnel. Figures 18 and 21
show these differences to be very large, and,

consequently, there will be a large uncertainty

in tile proper values of the correction factors.

As pointed out previously, reference 6 indicates

large effects of jet length on the corrections,
even at x=90 °. For other skew angles these

jet-length effects may be even greater since they

wouhl probably exhibit a dependence upon
whether the assumed wake intersects the free

lower.boundary or whether it intersects the closed
lower boundary of the exit cone. In view of tile

foregoing considerations, low-speed tests of VTOL-
STOL models in open wind tunnels are not
recolmnended.

If only an open wind tunnel is available, it
should be preferable to install a ground board or

retlection plane along the lower edge of the jet
in order to simulate a tunnel with a closed floor.

This solution has proved feasible even in wind

tunnels as large as the Langley full-scale tunnel

which has a test section 30 feet high and 60 feet

wide (fig. 31). In this case, an available rellectiou

plane designed for semisl)an wing tests was
modified to accept the normal tunnel mounting

struts. Calibrations of the tunnel jot with the

retleclion plane in place were thus already awfil-

able. Many open wind tunnels already have
such semispan reiloction planes and can be simply

modified to accept a complete model. Even in
those cases where a retlection plane does not

already exist, construction and calibration of a

reflection t)lano may be i)referal)le to testing in the

uneven flow often found in the return passages.

LONGITUDINAL DISTRIBUTION OF INTERFERENCE

While a klmwledge of the interference at tile

model itself will of tell he adequate if the model is
sufIicienlly small, there are many cases in which

it. is necessary to know much more about the

distribution of the interference over the regioz,
occupied by the mod(,l. The most obvious case

in which this is true is that of te_ts in which

pitching moments are measured. Hero there
will be a correction to the moments which will,

in general, depend upon the difference in tile
interference at tile center of lift and the interfer-

ence at the tail location. Evaluating this cor-

rection requires a knowledge of the longitudinal
distribution of the interference behind the model.

This information is given in the tables of references
9 to 12. For certain cases, the interferences are

displayed graphically herein in order to assist
the discussion of the nature of these effects.

Corrections to free air.--The interference factol_

for correcting to free air from a closed tunnel are

presented in figures 32 to 35 for a model centered

in wind tunnels having width-height ratios of 2.0,
1.5, 1.0, and 0.5. The corresponding interference
factors for wind tunnels closed on the bottom

only are presented in figures 36 to 39.
It will be observed that the corrections for both

wind tunnels are roughly similar in trend. This is

particularly true at low skew angles. This result

nfight be expected since it has already been
remarked that at low skew angles the corrections
are ahnost entirely due to the floor which is iden-

tical for either configuration. For wind tunnels
with 3"__1.0, the main effect of decreasing 3' is to

decrease the magnitude of the correction factors.

This does not hold, in general, for the narrow,

deep wind tunnels (3,=0.5) where tile side
boundaries, because of their relatively closer prox-

imity, can have pronounced effects upon the
distribution of the interference factors.

The effect of skew angle upon the longitudinal

distribution is very pronounced. Notice that the

interference factors giving AW behave in roughly
the same manner. For x=0 °, the maximum
value of these correction factors is found at the

model location and they decrease both in front of,

and behind, this point. As the skew angle in-

creases, the point of maximum interference shifts
rearward an(t i_ usually found nearly directly

above the point at which the assumed wake inter-

sects the floor. For x=90 °, of course, the final

value of _._, well downstream will be twice that at
the model. This is in accordance with previous

work on wings. ,,
The factors givinlg the horizoutal interference

velocities all vary in the same manner, but the
trends are rather diffel'cut from those discussed

previously. It will be seel_ that, in gcaeral, the
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horizontal interference velocities reverse sign at

some point at or behind the model location. Thus,

if the walls induce a horizontal velocity opposing

the forward velocity in froiJt of tile model, then,
for the same condition, but well behind the model,

the walls will induce a horizontal velocity which

adds to the forward velocity. Notice too that,
even for cases in which the corrections are zero at

the model, there may be substantial corrections

required at points ahead of or betfind the model
(fig. 35, for example).

Ground effect.--The longitudinal distribution of

interference in ground effect (for only the closed
floor of a wind tunnel) is shown in figure 40. The

trends with skew angh; will not be discussed in

detail since they are essentially as given in the

preceding section. Note that figure 40 is presented
in terms of x/h, which is more appropriate here.

The quantity x/h is given by

x x

_= __ (58)

Corrections to ground effect.--The loltgitudinal

distributions of interference factors for correcting
directly to ground effect from a closed wind

tunnel with 3,=1.0 are given in tlgures 41 to 44.
The correst)ondillg interference factors for a wind

tunnel which is closed on the bottom only are

given in figures 45 to 48.
The corrections to ground effect, of course, do

not inchJ(le the effect, of the it_tagc system directly

below the wil_d-tutHlel lloor. Consequently, the

etrccts of the upper boundary and the sides of the
test. chamber assume a relatively greater im-

portance in deten,fining the interference. These

three walls are all completely closed for the

closed tunnel and completely open for the wind
tunnel which is closed on the bottom only. Con-

sequently, it is fouled that the correspondillg
factors for tile two willd tunnels are generally of

opposite sign and that they are usually of the same
order of magtlitude in absolute wtlue.

It will be seen thai 6w.n, 6,,.L, and 5¢._, all

approach zero rather rapidly as the model is
brought closet" to the lloor, hi the case of 5,.t. and

5,_.z, this decrease is so rapid t_hlit these correction

factors at'c usu,lly coJ@h'tely Jlegligiblc for models

mounted t_t, or below, the wind-tunl_el centerlinc.
The saz_lc result is found for low skew angles in

the case of 5_.L; however, tile reduction is some-

what less rapid at_ higtl skew angles. Evell so, the

corrections are small by comparison with correc-
tions to tile free-air condition. The factor

_.o, however, displays a somewhat different
behavior. In this case, the reduction in magnitude

as the model is lowered is much slower, and a
substantial correction factor exists even at _-= 10.0

where tile nlodel is virtually buried in the Iloor.
It will be noted that in this case the effect of skew

angle diminishes markedly as the model is lowered.
Thus, at these low nlodel heights, a correction to

the horizontal velocity at the tail may still be

required; however, it may be possible to apply
this correction without actually having to find

the skew angle first.

Measurement of forward voloeity.--Thc dis-

tribution of horizontal interference through the

test chamber has important consequences with

regard to the measurement of the wind-tunnel

velocity itself. Notice that if the forward velocity

is measured within the test section by means of a

pilot tube or similar device, the walls, because of
the presence of tile model, will induce a horizolital

velocity in the prescl_ce of the measuring device.
The proper correctioll factor t,o apply in such a
case will be equal to the difference between the
correction factor at the tuodel and the corrcctiol_

factor at the measuring device. Tile measure-
merit can become even more difficult if tile velocity

measuring device is sensitive to small changes in

I)itch angle, since it will then be found necessary

to correct the measurillg device for tile w,rti_'ei

interference velocity as well. Systetns which
measure forward velocity by sensing static

• , /

pressure m the sotthng chatuber should lie much
less sensitive to such efrects.

LATERAL DISTRIBUTION OF INTERFERENCE

A knowledge of tile lateral distribution of

interference is of importance in assessing the de-

gree of nonuniforlnity of the inLerfercnce over the
span of a model. As will be shown in subsequent

sections of this paper, tl,e lateral distributio_ of

interference is also of i_@orta,_ce ill estimatittg the
interference effects on models having elements

arranged in side-by-side configurations as well as

in extending the analysis to l,_odels of finite span.

Closed wind tunnels.--The lateral distribution

of tile interference fact_ors for closed wind tunnels

is shown in figures 49 to 52. The interfcrellce

factors are plot_tcd against y/B which may be
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obtainedby notingthat

?_/_ 1 ,Jff_]

B--_ H
(r,:t)

It will be seen that the interference factors

which determine tile vertical interferene_ velocity

are substantially less near the sides of the wind

tunnel when tile width-height ratio 3' is large and
tile skew anglo x is small. Tl,is effect is much

less markc'd for small values of 3" aml large values
of X. indeed, for 3"=0.5 (fig. 49(d)) the Ireild is

actually re.versed througholit the entire range of
skew angles. The lateral variation in the inter-

ference factors a,,L ,nd _i_.z, is not as great as tile

variation in the factors a:.,. and _:.D. In general,
the longitudinal interference factors are found to

be most positive at, the lnodel and least positive
near the walls.

Wind tunnels closed on the bottom only.--The
lateral distribution of the interference factors for

wind tunnels closed on the bottom only is shown
in figures 53 to 56. These figures are also pre-

sented i,l terms of y/B.
It is observe(I in figures 53 and 55 that the

interference factors giving the vertical interference
velocities are uniformly most negative at the

model nnd become less negative toward the walls.

The opposite trend is shown in figures 54 and 56
for tile interference factors yielding the horizontal
interference velocities when the width-lieight ratio

is large. For small width-lleight ratio, however,

there is a tendency for this trend to reverse,

yiehling the most negative factors at the model.
Ground effect.--The lateral distribution of

interference factors in groulld ell'oct is shown ill

figure 57. ]lere the interference factors are
presented plotted against the approl)riate nell-

dimensional length y/h where

Y
= ¢ H (60)

In till cases, in ground effect, the maximttnl inter-
ference is found at the model, and as wouhl be

expected, tile interference factors decrease rapidly
with distance from tile model.

Corrections to ground effect.--The lateral

distril)ution of interference for correctitlg from a
closed wind tunnel to ground efl'ecl is shown in

figures 58 1o 61 for it square wind tunnel (,=1.0).

The correspondi,g factors for a wind tunnel

which is dosed on the bottom only are shown in

figures 62 to 65. It will be observed, in general,
that these factors are much smaller and much less

variable across the tunnel width than the corre-

sponding factors for corrections to tim free-air
condition. (Note the change in scale.)

Laterally offset models.--Tlm lateral distribution

of interference when the model is laterally offset
is shown in figures 66 to 69 for a closed wiud

tunnel with 3"=2.0. The correspondi,ig factors
for a wind tunnel witch is closed on tile bottom

only are slmwn in figures 70 to 73. These factors

ilre plotted against tile lateral locatioil as Ineasured
froin the center of tile wind tiliiliel rather tiiaii tile

location as llleastlred frolll tiio nlodel; that is, tiie

factors tu'e plotted against y'lB which is defined
as follows:

' y

The location of the model for each curve is

indicated by the symbol on eaeh curve.

As expected, the distribution of interference is
no longer symnlctrical about the model location
when the model is not ntounted in the center of
the wind tunnel. Tile differences in interference

at a given distance fi'om the model are small when
the model is still near the center of the wind

tunnel (r/=0.75) but become increasingly larger
as the model is mounted nearer the wind-tunnel

wall (,7= 0.25).

hlterference factors have only been calculated

for niodel loclttions approilehhig one widl of tile
wind tunnel. There is all obvious syulluetry with

respect to model location. This symmetry may

be stated by specifying that the correction factors

for a position given by y/H and ,_ are the same as
those for --y/H and (2--r/).

VERTICAL DISTRIBUTION OF iNTERFERENCE

A knowledge of tim distribution of interference
above and below a model becomes of importance

when assessing tile interference for nlodels which

consist of lifting elenlents ari'anged in a vertical
array. Tile simplest such case is l)robably that of

tile unloaded rotor or "Roiodyne" coiifiguratiorI.
Closed wind tunnels.--The vertical distrit)ution

(if the inlerference factol's for li closed wind

t,uiine[ with a width-height ratit) of 2.0 is shown

ill figlll'es 74 I.o 77. These Jllterfel'elice factors

are Iflotted agaiilst the hl('ation hi 1he wilid tullneJ
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as given by

z' z . 1

_=_+_--i (62)

The location of the model corresponding to each

curve is shown by tile symbol on tile curve.

Ill general, tile mininnun rate of change of tile
interference factors with vertical position is found

to correspond with model locations at or slightly
above the center of the wind tunnel. Tile actual

model location for |ninin|unl rate of change is,
however, a function of skew angle.

For a closed wind tunnel, $_.,. is a mi||imum at

approximately the same model location as that for

mininmnl rate of change (fig. 74). For models
mounted above this point, _f_._ is greater above
the model than below the model. For models

mounted below the point for minimunt interference,
_._ is always larger below the model than above
it.

The remaining three correction factors, _I_.L,

$,,.D, and $_.D, display an entirely different

behavior. Figures 75 to 77 show that _,,.L and
$,.D always increase in the positive direction and

that _,_.D increases in the negative direction as the
model is lowered.

Wind tunnels closed on the bottom only.--The

corresponding correction factors for a wind tunnel
closed on the bottom only (with _=2) are shown

in figures 78 to 81. It may be seen in figure 78

that, for this tunnel, _,o.n is always greater in the
positive sense above the model for all vertical
locations of the model. The other three correc-

tion factors, in general, display minimum values
for model locations near the center of the wind

tunnel. The opposing character of the trends
between this and the preceding case may be

explained by the fact that in the previous case
the model was positioned between two similar

boundaries whereas in the present case the model

was positioned between two dissimilar boundaries.
Ground effect.--The vertical distribution of the

interference factors above and below a model in

ground effect is shown in figure 82. It may be

seen that all four interference factors always

increase below the model and near the ground.

The increase toward the ground is always greatest
at low skew angles for those factors which give
the vertical interference velocities. For the factors

giving the horizontal interference velocities, the

maximum increase is noted for skew angles near
30 ° .

MORE COMPLEX MODELS

The foregoing considerations apply to models

consisting either of a single lifting element or of

several elements which are very closely spaced
with respect to the wind-tunnel dinmnsions. When
these conditions are met, the interference factors

presented previously may be used directly. When

the model consists of several lifting elements which
are widely spaced in comparison with tile wind-

tumml 'dimensions, such a simple treatment is not,

in general, adequate. In such cases, it is necessary
to consider the various elements of tile model

independently and to consider additional inter-
ference at each lifting element caused by tile

presence of the other elements within tile wind
tunnel as well as the interference at each elemeut

due to its own presence in the wind tunnel. These

considerations are illustrated herein by examining

three cases of equally loaded two-element lifting

systems with tim elements.arranged in tandem,
side by side, and vertically. In all cases, the

discussion as well as the figures presented refer
to a closed wind tunnel with a width-height ratio
of 2.0.

Tandem system.--Consider a lifting system of

two individual equally loaded elements arranged
one behind the other, separated by a distance H

equal to the senfiheight of the wind tunnel, and
centered ill the wind tmmel. Since effects of

finite test-section length are neglected in this
analysis, the longitudinal distribution of inter-

ference factors shown in part (a) of figures 32 to

35 applies to either element, provided that the
origin is always assumed to be at the location of

the appropriate element.

Each element of the lifting system, because of
its own presence in the wind tmmel, experiences
interferences at its own location which are found

at x/H=0 in figures 32 to 35 (or alternatively, as

given in ligs. 10(a), ll(a), 12(a), and 13(a) for
_'=1.0). This interference is shown in figure 83
as the curves labeled "Isolated element." In

addition, because of the presence of the rear ele-

men{,, there is an additional interference at the
front element. This interference may be found

(in figs. 32 to 35) at the position of the front ele-

ment (x/H=--l.0) with respect to the rear ele-
ment. The total interference at the front element
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is the sum of the interference caused by its own

presence and tile interference caused by tile pres-
ence of the real" element. This sum is shown in

figure 83 as the curves labeled "Front element of

pair." Similarly, tim rear element of the pair

experiences an additional interference due solely
to tile presence of tile froat element in tile wind

tmmel. Thus, the total interference at the rear

element is the sum of the interference caused by

its own presence and the interference caused by
the presence of the front rotor (found at x/H= 1.0

in figs. 32 to 35). This sum is shown in figure 83

by the curves labeled "Rear element of pair."
It will be seen in figure 83 that the interfere|ice

factors are quite differcut fi)r tile front and rear

elements of tile system. Thus, if tile model is

large, or if the lift is great, each element of the

system will operate at substantially different

effective rates of sink and effective forward veloci-

ties. Under such conditions, the actual test data

may be of dubious value. It is imperative, there-

fore, that models incorporating tandem lifting

systems be kept quite small in order to minimize
such effects.

The interference factors obtained in the pre-

ceding manner are based upon only the momen-

tum area of a single element. If it is desired to

correct only the overall lift and drag of the tandem

system, it is preferable to base the coefficient UllOn

the total ntomentun_ area of the entire system.

Since this momentum area is twice that of a single
mitt, the correction factors in this system will be

one-half of those computed by the foregoing pro-

cedure. Such interferem'e factors, giving tile

average hlterference of both elements, are pre-
sented as the curves labeled "Overall correction"

in tigure 83. The correction factors obtained iu

this manner are markedly less at low skew angles
than the isolated element corrections. As will

be she,ll in a subsequent portion of this paper,
similar effects are ol)taiRwd as a result of finite

size of a single element.

The l)reeedillg example is I'elativcly simple in
that the lifts of tile two elements have l)een con-

sidered to be in a fixed relation to each other; that

is, the lifts were assumed to be always equal.
When the lifts of the two elements are assumed to

vary according to the el)crating condition, it is no

longer permissible to add together the effects of
the lifting system on itself and tile effect due to

the presence of the other rotor. This ensues from

the fact that these two effects are caused by differ-

ent systems which may have different lifts, drags,
and nmmentum areas. In such cases, it is neces-

sary to maintain the identity of the source of

interference by finding four, rather than two, sets
of interference factom. These are as follows:

The interference at the front element due to its

own presence, the interference at the rear element
due to tile presence of the front element, the inter-

ference at the rear elelnent due to its own presence,
and the interference at the front element due to

the presence of the rear element. Then the in-

terference velocities at both elements may be
determined by using Am, Uo, and We of the front

clc,nent to tirol tile first two interferences, and

A:, Uo, aml We of the rear element to fiml the
second two interferences. Finally, the appropri-

ate interference velocities at each element may be
added to obtain the total interference velocities.

It is implied, of course, that the il_dividual lift and
drag of each element must be known in order to

carry out this procedure.

Side-by-side model.--Consider now a side-by-
side nmdel consisting of two lifting elements

separated by a distance H equal to the semi-

height of tile wiml tunnel. Assume, further, that
the entire system is centered in the wind tunnel

such that the two elements assume the positions

described by ,/=0.75 and ,7--1.25. Because of

the symmetry of tile system it is necessary to
consider only one element, say the element at

_----0.75.
Because of its own presence in the wind tunnel,

cach clement of tile pair i_mum interference ve-

locities correspomling to the interference factors
for 7/----0.75 at x/H=y/H=z/H=O. These factors

are shown as a function of skew angle in figure 84,

whc|'c it may be seen that they differ only slightly
from those for _----1.00.

Because of the presence of the second element
in the wiml tlmnel there is an additional inter-

ference which may be fouml (from the symmetry

considerations previously discussed) as the inter-
ference for n--0.75 at x/H=z/H=O, y/H=--l.O.
The total interference is the sum of these two

terms and this sum is shown in figure 84 as the
curves labeled "Either element of pair."

It may be seen in figure 84 that the total
interference at either element is substantially

increased over that of a single isolated element.
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ltowever, if as before, an overall correction based
on the total momeutunl area within the wind

tunnel is used, tile net result is tLdecrease in the

interference factors. Tile decrease is greatest at

low skew angles and again is similar to the trends
with tinite size that will be discussed subsequently.

Vertically arranged model.--Fimllly, consider a

model consisting of two equally loaded elements
arranged one above the other and separated by a

distance equal to 0.2H, where H is the semiheight
of the wind tumml. Assume that the upper

eh, ment is centered (_'---1.00) ill tim wind tmmel;
the' lower element is then situated at _-=1.25.
The interference for isolated elements in these

positions is shown in tiguro 85. In a,hlition t,o

this interfere,we, each element experiences an
interference due to the presence of the other
element. The total interference for each element

is as shown in figure 85. The overall correction,
however, when based on total nlonientum area,

is at)proximately that for a single isolated element
located nfidway between the two elements of the

pair.
EXTENSION TO FINITE-SIZE MODELS

The theory developed herein expressly al)plies

only to models which are wmishingly small with
respect to tile wind-tmmel dimcnsious. Ill

general, most wiml-tumml tests are conducted

with nlodels of a comparatively large size. It is
well kuown that classic wiml-tmmel interference

theory (for example, ref. 2) predicts substantial
eifects of model size on the wiud-tmmel inter-

ferenee. Similar work for rotors fief. 8) predicts

similar effects.

Actually, it is possible to :lse the present
results, together with superpositions thereof, to

obtain equivalent results for finite-size models.
In essence, the procedure is to consider the wake

originating from tile model as broken into seg-
ments, each repl'eselltiug the wake of only a

portion of the model. The effect of each partial
wake as well as tile hlterferences of all the other

partial wakes in the wiml tumml can then be
added at each point on the model in order to
obtain an overall correction for the finite-size

model.

Wings.--For a wing, the system of partial wakes

just described would superlicially resemble the
wakes of several vanishingly small models flying

side by side. For a wing with a ratio of span to
whld-tulmel width a=0.625 centered in a closed

wind tunnel of width-height ratio _,----2.0, this

system of partial wakes would appear as showx,
sehemaLically in figure 86. At any point on ill,.

wing sl)an, the interference faelol_ will be given a
a smmnation of the form

y_, _iA? ,Xs

(6:_)AT

/x8

A sample case is worked in tabular form in

appendix D.
Rotors and propellers.--Equation (63) should

1)e adequate for systems where the wake is planar
as a result of originating essentially along a lin.

representing the trailing edge. For a rotor or a
propeller, however, the wake originates from ap

area, and thus describes a solid cylinder rathe:
than a plane. In such cases, the following alter-

nate form nlay be used to obtain the effect (_
finite size:

_---- AL AA (64

EFFECT OF FINITE SIZE FOR WINGS

Interference at center of span.--Calculafious

according to equation (63) have been made for
wings of varyh_g spau-to-tuuncl-width ratio a in a

closed wind tunnel havhlg a width-height ratio of

2.0. The coml)utcd interfcreuce factom at the
center of the centrally located whig are shown as

a function of skew angle in figure 87. It may be

seen that, in this case, au increase in span always

results in a significant decrease in the magmitude
of all four interference factors. This does lint

necessarily mean, however, that the interference
velocities themselveg decrease, because the mo-

mentum area of the wing increases rapidly with

the spau of the wing. Note that, in general, for

wings,

A_ _s2 _ 2 (65)
_-;=_= _ •

Thus, as a increases, the interference velocities in-

crease although not as rapidly as the monmntum
area increases.

Distribution of interference over span,--Tlm
distribution of the interference velocities over the
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span of a series of finite-size wings is shown in
figures 88 to 91 for tim same cases treated above.

In general, although not without exception (fig.
91(a)), an increase in span-width ratio leads to

reduced interference factors ill the central portion
of the wind tumml and increased interference fac-

tors near the walls of the wind tumwl. These

interference distributions are of most importance
in determining the distortion of flow over the
model as a result of wind-tulmel interference. The

significant item to be obtained for any indi-
vidual case is the Inaxhnuln difference iu the

interference velocities between any two points

on the span. Thus, not only is it necessary to
• ccount for the increase in momentum area

_ith span, but it is also necessary to account

for the varying span itself in determining the
pertinent difference. Note, for example, that

)ecause of its zero span, a wing having a=0 has

no distortion whatever, despite the fact that such
wing produces the most nonlinear distribution

of the interference factors on the lateral axis of

the tunnel. This point will be discussed nmre
fully with respect to rotors in another section of

this paper.

EFFECTOFFINITESIZEFORROTORS

Wake of rotor.--For rot,ors (or, equally well,

for propellers near a----90°), the wake may be
represented as a continuous distribution of vortex

rings, parallel to the rotor disk and carried away,
under the mutual inlluence of the downwash and

forward velocity, along an axis inclined to the

rotor axis by the skew angle x (ref. 16). For the

case of uniform disk-load distribution, this wake

resolves itself into a single skewed cylimler, the

surface of which consists of continuous, nniforlnly
distributed, vorticity.

Approximate calculation" of wind-tunnel inter-

ference.--For the approxhnate calculation of
wind-tunnel interference, that is, by using the

present results to obtain interference factors for a
rotor, the disk area of the rotor is broken into five

equal portions as indicated schematically in flgnre
92. The wake of each portion of the rotor is

then represented by a doublet wake, as shown,
and furthermore, under the assumption of uniform

disk-load distribution, the strengths of the five

doublet wakes are all equal. Then the interfer-
ence factors at the center of the rotor for ¢--0.333

in a closed tunnel with _.=2.0 are computed by

the use of equation (64).

_32643o--B2--3

The interference factors, computed as outlined

above, for a=0.333 are shown in figure 93. In

each case, the equivalent factors for a=0 are also
shown. In addition, for $_.L, the interference

factors for a=0.3 and 0.4, as obtained by direct

integration of the cylindrical vortex wake in

reference 8, are shown for comparison. It may
be seen, first, that the results obtained by the
present method are entirely equivalent to those

obtained by the method of reference 8. Second,
it may be seen that, in this case, as well as for the

wings treated previously, the effect of finite size

is to decrease the correction factors. Although
the trends are the same, however, a closer com-

parison of figures 87 and 93 will show differences
which are ascribable to the differences in model

configuration.

Effect of finite size on _, at rotor center.--

More complete calculations for a rotor could b_

carried out according to the approximate method
outlined above. On the other hand, if the dis-

cussiou is restricted to _,,. only, the equations of

reference 8 provide a more rapid means of obtain-
ing this factor entirely on the digital computer.

It will be noted that the equations of reference

8 are essentially equivalent to equation (23) in
the present report with the sole exception that

tim K functions are replaced by expressions more
appropriate to the basic cylindrical wake and

image system shown in figure 94.
Figure 95 presents $_.L as a function of wake

skew angle for several size rotors ia a closed wind
tunnel and in a wind tunnel closed on the bot-

tom only. Also shown in figure 95(b) is the inter-

fcrelJce for only the closed Iloor of either tumml.

In all cases, the rotor is centered in the wind tun-
nel and _, is 2.0. It may be seen that, regardless

of wind-tunnel configuration, an increase of rotor

size generally decreases the interference factor.

Furthermore, the magnitude of the decrease is
essentially the same in all cases. In particular,

figure 95(b) indicates that even when finite size

is considered, the interference at low skew angles
is still primarily due to only the floor of the
wind tunnel.

Effect of finite size on distribution of _.L.--

The longitudinal distribution of _._ for various

values of _ is presented in figures 96 to 98 for

the three cases treated in the preceding section.

The equivalent lateral distributions are presented

in figures 99 to 101. It may be seen that, in
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general, an increase in a does not alter the gen-
eral trends indicated by calculations for a=O.

However, all increase in rotor size does distinctly
affect the maximum values of the interference

factors found along tile axes. In general, tile
maximum interference factor decreases with an

increase in rotor size. As before, however, this
decrease in the factor is not sulIicient to overcome

the effect of increased momentum area so that

the actual interference velocities still increase with
rotor size.

MAXIMUM ALLOWABLE SIZE OF MODEL

In any test, there is a maximum size of model
which can be satisfactorily employed without the

necessity for excessively detailed correction proce-
dures. For normal tests of conventional models,

this size is sometimes stated in terms of a maxi-

munl allowable correction. For example, reference
17 states that the model size should be chosen so

that the maximum angle-of-attack correction due
to wall interference shall be less than 2° . Such

limitations as those of reference 17 actually con-
tain within themselves two features. The first is

that the theoretical corrections are only approxi-
mations and a limit to the maximum size of correc-

tion also limits the approximation errors in the

theory. The second feature is that if the overall
correction is small, then the accompanying dis-
tortion of interference over the model will also be

small. Thus it will not be necessary to provide

corrections for such etrects as induced camber due

to nonmfiform interference.

As pointed out in reference 13, the aforemen-
tioned criterion for maximum correction angle

should be relaxed to some degree when the results

of the present analysis are used to correct data.
The basis for this statement is the faeL that tlle 2 °

limitation is set on the basis of a theory which ab-

sorbs all effects of wake skew angle as an approxi-

mating error. In the present case, this problem is
taken into account.

Tile actual size limitation for models will be set,

in general, by tile degree of nonuniforlnity of the
interference over the region occupied by the model.

Reference 13, by using the distributions of inter-

ference sinfilar to those given in figures 96 to 101,

develops a criterion for rotors on this basis. Note
that for rotors, where the nmmentunl area is _rR_,
the vertical interference due to lift can be written

as

Aw . TR _ 7r
_o=6_.,.4-_./=_ _._ (66)

In consequence of equation (66), the vertical

interference velocity is now expressed explicitly in

tel',ns of the mean vertical induced velocity of the
rotor itself, lf, now, the niaximuni difference in

vertical interference velocity along the axes of the

rotor is obtained from figures 96, 97, 99, and 100,

it is possible, after some cross plotting, to obtain
charts such as those given in figure 102. This

figure shows the size of rotor which incurs a given
maximum difference in interference velocity along
its principal axes. This maximuni difference is

stated as a fraction of the mean induced velocity
of the rotor itself.

Figure 102 may be used as a guide in selecting

a rotor size for a given test. It would appear
that for tests in which only crude qualitative

data are expected, interference nonuaiformities

of as much as 50 percent of the rotor induced
velocity might be tolerated with a niaximum

nonuniformity of 25 percent of the rotor induced

velocity being desirable. For general-purpose

quantitative test work, the corresponding per-
centages would be nearer 25 percent and 10 per-

cent. If, however, it is desired to do very detailed
work, such as measuring the pressure distribution

on the blades for loads work, it may be necessary
to restrict the maximum nonuniformity of inter-

ference velocity to the order of 5 percent or even

2 percent. Thus, once the purpose of a planned

test is firmly in lnind, and once the range of wake

skew angles ia which the test will be conducted

is known, it is possible to use figure 102 to obtain
the luaxinmm allowable rotor size that is

permissible.
Figure 102, of course, only applies to centrally

located rotors in wind tumlels having width-

height ratios of 2.0. For other mounting posi-

tions, wind-tulmel proportions, and model con-

figurations, similar charts can be prepared by
using the considerations discussed in the earlier

sections of this paper.

EXPERIMENTAL VERIFICATION

The utility of the computed corrections, of

course, depends upon tile degree to which they

can be verified by experhnent. Unfortunately,
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the existence of more tha_Jone correction factor,

as well as the dependelme of the correctionfactol_

upon skew allgle, makes direct experimental

determination of the correction factors extremely
difficult. Thus, in the present ease, the alterna-

tive approach of attemptilJg to correct eOml)ara-
tive data from differellt wimld-tutmel test sectiolm

will be used.

One source of such comparative data is reference
7 which presents the results of tests of a number of

different VTOL configurations in both a 7- by
10-foot test section (fig. 103) a,_d a 17-foot-square

test sectiofi (fig. 104). The data of refereuce 7

have all been partially corrected by the use of
standard wing correctioiis al)plicd to ol_ly that

portion of lift not provided by direct thrust, that

is, the so-called "circulation" lift. Such correc-

tions provide no correlation at low speeds and they

have been removed from the data before pre-
sentation herein as uncorrected data.

In all cases, the interference factors for a
vanishingly small model have been used in

correcting the data.

Jet flap.--As the fil_st example, consider the
swept wing with a jet. flap deflected 60 °. The data

for this configuration are presented in figure 105(a)
(obtained from fig. 9(a) of ref. 7). The uncor-

rected data for the 7- by 10-foot and 17-foot sec-

tions are shown to be quite similar except for the
angle of stall which is substautially less in the 7- by

10-foot test section. The corrections presented in

this paper alter the two sets of data so that they

appear as shown in figure 105(b). The disparity
in stall angle has now essentially disappeared; but,

at first glance, it would appear that the agreement
between the two sets of data has been worsened

in all other respects by the corrections. It should

be noted, however, that the alteration in dynmnic
pressure has altered C, as well as both CL and

C_. Thus each point on each curve represents
the performance at a different value of C, as well

as a different value of a. The peak values of both
C,., and 5a are noted for each case. It will be

observed that the peak values are substantially
different for the data from the two test sections.

In order to obtain a more graphic picture of

the validity of the theory, the data have also been

corrected to a common value of C, by the use of

the experimental data for jet flaps as presented
in reference 18. After this additional correction,

the data appear as in figure 105(e). it may be
seen that the data from the two test sections now

agree within the probable experimental accuracy
of the tests.

Jet flap in ground effect.--A similar comparisoll
may be obtained from the ground-effect tests rust
on the saane model in the 17-foot test section.

Neglecting the finite extent of the ground board,

these tests would be roughly equivalent to operat-
ing the model in a position lower than the center-

line in a tumlel of width-height ratio greater than
2.0. The correction factors for such tunnels

have not been computed; however, as pointed
out elsewhere in this paper, the correction factors
h)r such cases should be almost identical to those

for simple ground effect. Consequently, an
attempt has been made to correct these data to

the free-air condition by applying the correction

factors for ground effect. The uncorrected data

are shown in figure i06(a). After correction, the

data appear as in figure 106(b) where the peak
values of C_.¢ and z_a are shown in each ease.

Finally, after correction to a common value of C,,
the data appear as in figure 106(c).

It will be observed in figure 106(e) that reason-.
able agreement is obtained between the data for

the two highest heights; but that the agreement
becomes substantially poorer at the two lower

ground heights. There are several reasons for

this disagreement. Note, in particular, that there
is a variation of the wind-tunnel-wall induced

interference along the chord of the model. This

variation is relatively moderate with the model

in the two highest positions but becomes increas-
ingly severe as the model is progressively lowered.

This gradient of interference is, in fact, aerody-

namically equivalent to camber. The percentage
of camber, computed by assuming a circular-arc

camber line between the one-quarter-chord and

the three-quarter-chord points of the mean aero-
dynamic chord of the airfoil, is noted in figure

106(c). (lt should be noted that the effective

camber i_nd dihedral will also vary along the span

because of sweepback as well as because of lateral

gradients of interference. These features are
neglected herein.) The differences between t.he

fully corrected curves are of the nature and magni-

tude that might be expected as a result of the
large induced inverse camber. The main point

of figure 106(c) is that the model size and tuamel
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size should be chosen so as to avoid pronomlced

variations in interference along the chord. This,
rather than the absolute size of the correction

factor, probably determines the maximum size
of model that can be tested successfully ill a

given wind tmmel. In this regard, there is no
real substitute for a very small model in a very

large wind tunnel.
Several other reasons exist for poor agreement

ill this case. These include: Tile fact that the

system used to correct the data to a common
value of C, is only valid before stall; tile finite

extent of the ground board; the small differences
between the corrections for ground effect and

those for the appropriate wide wind tunnel; and,

linally, tim representation of the nmdel as a point
source of lift, a representation that becomes

difficult to justify when applied to a model of

over 7-foot full span operating only 1N feet above

the ground.
Propeller-driven conflgurations.--Reference 7

also presents data for a series of propeller-driven
VTOL models in both test sections. Since no

systematic means exist for correcting the operating
variable Cr to a common basis, it is not possible
to use these data to obtain a clear-cut indication

of the validity of the theory. The data of refer-
ence 7 have, however, been corrected by the

present theory in order to provide an indication

of the magnitude of the corrections and their
effect upon the data. Tim data, uncorrected and

corrected, are presented for the same model tested

as a tilt-wing VTOL aircraft, a tilt-wing-with-flap

VTOL aircrafL, and a deflected-slipstream VTOL

aircraft in figures 107, 108, and 109, respectively.
The degree of agreement or disagreement

between the data for the two wind tunnels is not

the main item to be gained fi'om these figures

because the degree of improved agreement will be

dependent upon the sensitivity of the model

performance to changes of velocity in the velocity
range through which it is tested. The magnitude

of the corrections is, however, important. The

main difference (neglecting small changes ill skew

angle and wind-tunnel width-height ratio) between
the data obtained in the 7- by 10-foot and 17-foot
test sections is a reduction of area ratio by a
factor of 4. The effect of the walls should there-

fore be reduced by approximately the same factor

of 4; that is, the 17-foot tunnel data should still

require correction by an amount approximately
equal to one-third of the difference between the

two sets of data. In general, this is the magaitude

of the correction predicted by the present theory.
The impact of corrections upon the conclusions

to be drawn from the data is illustrated by the

data from the deflected-slipstream model tests
presented in figure 109. Here the extent to which
the aircraft may decelerate in unstalled flight is

indicated by the portion of the drag polar on the

right (positive drag) side of tim ordinate. On
this basis, the uncorrected 17-foot tmmel data
would indicate that this aircraft would have to

accelerate to avoid stall at Cr=14, and the 7- by
10-foot tunnel data would indicate that level

ffigh t without stall could just barely be main tained
at Cr=14. On the other hand, the corrected
17-foot tunnel data indicate that the aircraft

could nmintain steady unaccelerated level flight
at a Cr of 15.1, and the corrected 7- by 10-foot

tunnel data indicate an ability to maintain de-

celerations of 0.2g in level flight without stall
at a Cr of 17.0. The effect of the corrections

is, therefore, of extreme importance in determining
the limiting conditions of flight for this

configuration.
Ducted fan.--The ducted-fan data of reference

7 are of particular interest since comparative

tests in the 7- by 10-foot and 17-foot test sections
indicated that a wall correction exists even though

tlm fan area was less than 2 percent of the 7-

by 10-foot tunnel area. The corrected and
uncorrected data are shown in figure 110. For

this case, the correction to Cr is small percentage-

wise, and, as a consequence, the corrected curves

nearly coincide.
Rotors.--Reference 19 gives data for rotor

tests ill an 8- by 12-foot tunnel and in 3- by 4.5-

foot and 2.4- by 3.6-foot inserts within the wind

tunnel. For high speeds and reasonably small
lift coefficients, it is shown that the use of standard

wing corrections brings the data from the various

test sections into satisfactory agreement. This

is as shown by the work presented herein. At

the lowest speed and at lift coefficients greater
than unity, the @ing corrections failed to bring

the data into satisfactory agreement. Unfor-

tunately, the complete report (ref. 20), of which
reference 19 is a summary, indicates that the

presence of a 2-foot leaditlg-edge extension on
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the wind-tunnel inserts caused a change in the
data at the lowest speed which was of the same

magnitude as that observed by placing the rotor
within the insert. In view of this result, it

appears that the test inserts of references 19 and

20 were too short to simulate completely the

smaller tunnel at this speed. Therefore, no
attempt is made herein to correct these data.

Extent of veriflcation.--The foregoing material

indicates that there is at least partial experi-

mental verification of the theory available. A
more complete verification would require tests

in different wind tunnels at very closely spaced

increments of velocity in order that a uniform
value of the operating conditions could be obtained

by interpolation between the corrected data.
Such complete comt)arative wind-tumml tests

are not presently available.

CONCLUSIONS

A linearized theory of wind-tunnel jet-boundary
corrections and ground effect for VTOL-STOL

aircraft is presented. Numerical values of the
interference factors for a wide variety of rec-

tangular wind-tunnel configurations are pre-
sented in tabular form in NASA Technical Notes

D-933, D-934, D-935, and D-936. A study of
these nLunerical values indicates the following
conclusions:

1. Wind-tunnel interference and ground effect

are functions of the degree to which the wake is
deflected fi'om the horizontal. When undeflected,

the present results correspond ahnost exactly

33

with the results of classical jet-boundary-correc-
tion theory. When the wake is directed sub-

stantially downward, the correction factors are
much increased in size. Furthermore, with sub-

stantial wake deflections, the longitudinal as well
as the vertical interference velocities must be
accounted for.

2. When the wake is deilected to nearly vertical

angles, the wind-tunnel interference is primarily

determined by the wind-tunnel floor. Therefore,
under these conditions, tests ill a wind tunnel

with a closed floor closely correspond to tests in
simple ground effect. Under similar conditions

in a wind tunnel with an open floor, large dis-

tortions of the lower boundary will occur so that,
in practice, the corrections will be indeterminate.

For this reason, the use of completely open wind
tunnels for low-speed and high-lift-coefficient

testing is not recommended.

3. The theoretical results, as presented herein,
strictly apply to single-element, vanishingly small

nmdels. However, methods of extending the

present results to multielement systems and to
finite-span models are indicated, and sample
results are presented for a number of cases.

4. The tlleory is at least partially verified by

available wind-tunnel test data. Complete veri-
fication, however, would entail substantially more
meticulous tests than those for which data are

presently available.

LANGLEY RESF.ARCH CENTER_

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION_

LANOL_YAIR FORCZBASE, VA., July 18, 1961.





APPENDIX A

DERIVATION OF CLOSED-FORM EXPRESSIONS FOR THE INTERFERENCE VELOCITIES
AT THE MODEL IN GROUND EFFECT

VERTICAL INTERFERENCE DUE TO LIFT

Tim vertical interference velocity due to lift (w_ke of vertica2 doublets) is given by equation
(26) as

A {_ L\ Am

where, from equation (23) (with the double summation set equal to zero),

2_ K .x z xy z x\ l \ l u z \-I
_--ta,, • I)--K _,_, _-t,--_--2)-l-K _,,_-- tan x, _, _+ 1)j (Alb)_---;[ ( _,_,_,

where, in turn, from equation (5b),

ix\2 /y\2

x -] I-/x\_ /y\2 /z\2-1 s/_[_/(_)+(_)+(_)+_oo____s_,,_JL,,Z+,,Z*_._J
_; _*oo___'_.v'(_)*(____)+(,____)

X2 y2 Z 2 Z X . X2 y2 Z"l[-,/(_)+(x).(_).,,,_o_x_,,,,._],,/(,_).(,,).(,,) (..,.,.c,
Since it is the interference velocity at the model itself which is of interest herein, z=y=z=0 in

equations (A1). Then, substituting equation (Alc) into equation (Alb) yields

6w r_ 2{ --tali2X [ l+eosX_/l+tall2X ]__-__=--; (_/i_+cosx+tanxsinx)(l+tan2x)S_2 F (_x+cosx+tanxsiax)41+tan2x

+F --2+2 cos X_"]_-I tan'x x) s/_1(2--2 cos x)(2)/ (_/[--+tan _ X--cos x+tan x sin x) (l+tan 2

[ -- 1-4-cos X-_/l +tan' X :_3_}-- (41+tan _ x--cos x+tan x sin x)41 +tan' (A2)

Equation (A2) may be considerably shnplified and yields

8_,_ 2_=-;(-__,,._co_._,_o_._,_,_co_._) (_
or

_z 2

34
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Finally, substituting equation (A4) into equation (Ala) yields

z_w_=--I (3 cos_ xq-1) Am-xo wo (AS)

LONGITUDINAL INTERFERENCE DUE TO LIFT

The lottgitudinal interference velocity due to lift (wake of vertical doublets) is given by equation
(27):

Wo (A6a)

where, from equation (23) (with the double summation set equal to zero),

yz (__tan y z (A6b)

where, in turn, from equation (6b),
xz

#) +(#) +(#) +# cos X--# sin x [(_) +(_) +(_)_

Z • X2 y2 Z 2 X . X 2 y_ Z _

X2 y2 Z 2 Z X . ]2 X2 y_ Z

Substitutittg equation (A6c) into equation (A6b), with x=y----z=O, yields

6_.L=_2 [" --tan x
t"_T r [.(_/1 +tmff XTcos x+tan x si. x) (1 +tan 2 x) a/2Jc(l+cosx_)(--tan x--sin X_)(_/1+ tan' X+cos X+ tan x sin x)'(1 + tan _X)

(--2+2 cos X)(--2 sit| X) tan X
(2--2 cos X)2(4) ({i-'+ tan 2X--cos X+tan Xsin X)(1 +tatx' X) a,2

which, after simplification, reduces to

(--l+cos X_/l +tan _X)(--tat, x--sin l
.I (A7)

'_,z l( 2)_=_r 3 sin x cos3 x+sin x cos x+ 1 tan (A8)

Substituting equation (A8) into equatiou (A6a) yields

Z_uL= 3 sin x cos 3 x+sin X cos X+_ tan -_]_-oWo (Ag)

VERTICALINTERFERENCEDUETODRAG

The vertical it|terferet|ce velocity due to drag (wake of loagitudinal doublets) is given by
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equation (28) as
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Uo (h 10a)

where, from equation (23) (with the double summatioa set equal to zero),

$_Df._=__.2[_K(h_ta nx,_,_*l)_K(_,_,___2)+K(__tanx,_,___,)zx y z x y z .\

where, in turn, from equation (llb),
XZ

K -'"-'- : 7V/x\_ /y\2 /zX_-la/2h h h r //x\ 2 /y\2 /zV _ z x

L_/t_)+_)+_,J+_¢o,_-_,i,,xjL[,_)+[,_)+_,T,)J
Z X 2 y 2 Z 2 X . X _ y 2 Z 2

(Aloe)
x ' y 2 z ' Zcos x x ' y _ z z

and from equation (llc)

_]=Ff ,y +pJy +f ,yT'
L\_,] \_] \fi,]/

(A 10d)

Substituting equations (A10c) and (A10d) into equation (A10b), with z=y= z---0, yields

_.D=_2[" --tat, X (I +cos X41 +tan' x)(tan \+sin X41 +tan' X)

_ _LG/_ \+cos x+tan x sin X)(1 +tan' x) 3/' (_/l+tan' x+cos x+tan x sin x)2(1Wtan ' X)

(--2+2 cos X) (2 sin x) tall x

(2--2 cos X)2 (4) (_/l +tan2 X--COS X+tan X sin X) (1 +tan' X)3/' t (l+tan2 x) */_ (All)

which, after simplification, reduces to

6o.o=1_(2 x)f_ 7r\ sin x cos 3 x--sin 3 x cos x--4 cos 3x--_ tan _ (A12)

Finally, substituting equation (A12) into equation (A10a) yields

&wb¼ 2 sin x cos* x--sin 3 x cos x--4 cos s x--_ tan _]_-_auo (A13)

LONGITUDINAL INTERFERENCE DUE TO DRAG

The longitudinal interference due to drag (wake of longitudinal doublets) is given by equation
(29) as

_-_uo (A14a)
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where, from equation (23) (with the double summation set equal to zero),

x z zy z,.°-pT=-_.

where, ill turn, from equation (12b),
lyX' IzX 2

and, from equation (12c),

(A14b)

x x2 ys zl t
_f _--sin x _/(_) +(_) -t-(_)

Z_ y2 Z 2 z _. Xl ya g_

37

[(0,(0,(07

(Al4c)

(A14d)

Substituting equations (A14c) and (A14d) into equation (A14b), with z=y----z=O, yields

6, D 2 f --1 +[" --tan x--sin x_/1 + tan' x
------_r _. (_/T+ tan 2x+ cos x + tan x sin x) (1 + tan _x)S/_ L (_/1 + tan' x+cos x+ tan x sin x) _/1 + tan' xJ'

7

--2 sinx "]_ 1
(2----2-c-_-x-)__] ' (_/l+tan' X--cos x+tan X sin x)(I-t-tan' X) '/'

+E --tan x--sin x4i--Wtan' x -]' 2 tan X(Vi-+ta,,__--_o_ _--_i_x---_-_ xJ -(_ +tan' x)"'}

(-2) _
"_ (2-2 cos x) (4) s/2

(A15)

(A16)

(AIT)

which becomes, after simplification,

$,,.o==1( , 1 cosX )-_ _ 4 sin X cos_x--3 sin _ x cos X+_ l+cos x

Finally, substitution of equation (A16) into equation (A14a) yields

1( cosx "_A.hue= 4 sin x cos' x--3 sin _ x cos 2x+ 1 1+--_s X] Aoo Uo



APPENDIX B

DERIVATION OF CLOSED-FORM EXPRESSIONS FOR THE INTERFERENCE VELOCITIES AT THE MODEL

FOR ONLY AN OPEN LOWER BOUNDARY

VERTICAL INTERFERENCE DUE TO LIFT

The vertical interference velocity due to lift (wake of vertical doublets) is given by equation (26) as

AWL_(_ ) "Aow°A= (Bla)

where, from equation (23) (with the double sunnnation set equal to zero),

where, in turn. fronl equation (Sb),

_ ly\2

_)+_)
( _xy z =_ X

K\h' /t' h/ X 2+ y _+ Z 2@Z COS s!nXlr/x\2
/z\2-p/2

Z X_ y2 Z _ 2

-- x_ yB z 2 z x • x2 y2 z z_[,/(0+G)+(0+_co.___.,,,_],/(0+(_)+(_)J
and, from equation (5c),

/z\ 2 /y\_

_ _) +_),_,_-_.(_,-_,0= _, _., _ _..__,,._..,-_,,[,/(_)+(0+G)-_]Lw+W+_J

-- x _ y _ z _ x z 2 y _ z 2 (Bld)[,/(_)+(_)+(_)-_l,/(O+(0+(0
Since it is tile interference velocity at tile model itself which is or interest herein, x=y=z=O in

38
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equations (B1). Then substituting equations (Blc) and (Bld) into equation (Blb) yields

___._ 2 f -- tan' X
=--_" ),. (_/1 +tan' X+cos xWtan x sin X) (1 +tan' x) a/'

+F 1+cos x_/1 + tan _x
m(ql + tan' x-t- cos x+ tan x sin x) _/1 + tan 2x]'

[" --2__2 cos x m tan' x
--[.(2--2 cos X)(2).J (_/1+tan'x--cosxWtanx sin x) (1W tan' x) 3/_

2 tan' x

"_ (_/1 + tan' X+ tall X) (1 + tail' X) 'n 2 (41.t_tan, x+tan X)4i+tan' X (B2)

Equation (B2) may be considerably simplified, to yield

7 sin s x-- 3 sin _x) (B3)5.,L 1 (_--8 sin x+4 sin2x+4

Finally, substitute equation (B3) into equation (Bla) to obtain the vertical interference velocity at the

model for an open lower boundary:

Aw_=l(__8 sin x+4 sin, x+4 sins x_3 sin, X)A"--aw°A- (]34)

LONGITUDINAL INTERFERENCE DUE TO LIFT

The longitudinal interference velocity due to lift (wake of vertical doublets) is given by equation (27)

ma

AU_=(_) _4--owoA'_ (B5a)

where, from equation (23) (with the double summation set equal to zero),

xy z z y z
_f.___=__r [_K (__tan x,2 x _, _+ 1)--K (_, _,--_--2)+K (_-- tan x, _,--_-- 1)

where, in turn, from equation (6b),

xz

Z z s y' Z' X • X,' y' Z'

X X _ y' Z

z' y' z' __ZcosX__ sinx]'[(_)+(_)+(#)_

(B5c)
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and, from equation (6c),

TECHNICAL REPORT R-124--NATIONAL AERONAUTICS AND SPACE ADMIN'ISTRATION

Since it is tile interference velocity at the model itself which is of interest herein, x=u=z=O ia
equation (B5b). Theu substituting equations (B5c) aud (B5d) into equation (BSb) yields

_.L 2 [" --tan x

_-_ =--_" m(_/1 +tan _ x+cos x_----_anx sin x) (1 +tan 2x) s/2

(1+cos x_/_)(--tanx--sinx_/l+tan _ x) (--2+2 cos x)(--2 sin x)
(_/1 +tan_ X+cos x+tan x sin X)2 (1 +tan_ x) _" (2_2 cos x)_(4)

-- tan x 2 1-F (_/l+tan _ X--cos X+tan X sin X)(l+tan _X)u2"_ (l+tan 2 x) *tl (B6)

which may be simplified to yield

= 3 sin x cos a x -1 tan _-sm x cos x--4 cos 3 x (B7)

Finally, substitute equation (BT) into equation (B5a) to obtain

1( 1 _--smX. "cos cos3 \A"x)hut----- 3 sin X cos' X-- 2 tan X X--4 We (B8)

VERTICAL INTERFERENCE DUE TO DRAG

The vertical interference velocity due to drag (wake of longitudinal doublets) is given by equation
(28) as

(Bga)

where, from equation (23) (with the double summation set equal to zero),

• x z zy z x y z
'_'_-=--_2[--K (_--tan x, _, _+I)+K (_, _,--_--2)--g (_--tan x, _,--_-- I)] (B9b)

where, in turn, from equation (llb),

zz

+ + cos si,, Lt ) +W]

Z X 2 y J Z 2 X . X 2 y 2 Z _

Z X 2 :r 2 y _ Z 2
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Substitution of equation (Bgc) into equation (Bgb), with z--y----z=0, yields

#_.D 2[- --tan x (l+cosx_)(--tanx--sinx_/1-t-_)
_-_'---_-rL(_/l+tan=x+cosx+tanxsinx) (l+tan_X) a'' _ (_/_X+cos X+tanX sin X)'(l +tan= X)

_(--2+2 cos X)(--2 sin X) __ tan X
(2--2 cos X)2(4) (_/l+tan = X--cos X+tan X sin X) (1 +tan =X) sn

(--1+cos x41_) (--tan x--sin x_)7
__-:_o_t--_.x;_--_-l+-_,;_ j (Bmo)

Simplification of equation (B10) yields

_.D 1(3 cos X-{-_tan_) (Bll)----_r\ sin x cos3 X+sin X l X

Finally, substitute equation (B11) into equation (B9a) to obtain

X'XA.,
AWD=---1(3 sin X cos' X+sin X cos X+_ tan _) _-_o uo (B12)

LONGITUDINAL INTERFERENCE DUE TO DRAG

The longitudinal interference due to drag (wake of longitudinal doublets)is given by equation (29) as

_aa uo (Bl3a)

where, from equation (23) (with the double summation equal to zero),

_=,D 2 x x y z x y z
-_=--_r[--K(_--tanx,_,h+l)--K(_,_,--_--2)+K(_--tanx,_,-_--l)] (B13b)

where, in turn, fi'om equation (12b),

/y\= /z\ =

[_/(_)+(_)+(_)+_cosx-_sinxjL_) +_,_)+_,_)j

X . X= yS Z = =

X = y _ Z _ Z X • x = y = Z =
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Substitution of equation (B13c) into equation (B13G), with x=y=z=O, yields

6_ 2 f --1 Ff --ta"x--si"X'_l+tat'_X ]2
_------_rl (_/_ x+cos x+tan x sin x) (1 +ta,12 x) 3/2 L(_/1-+ tal_ x_ x-+-t_-mnx sin x) _/1 +tall' x

4 V --2 sin x j"12_l_(___{_tan 2 X--cos X+ tlt(2--2 cos X)(s)+L(2:_-i:;; k_(2) x si. x) (1+ta. _x)_/,

--[(_/1 --tan x--sin x_/i +tan' x T_ (BI4)
+ta_ 2x-cos x+ta,_ x si,_x) _/t +t_,,' xJ /

Simplification of equation (B14) yields

$. D 1{2
=_\ co¢ x-sin _x cos' x

1 cos x "_
2 1_"_ X/ (B15)

Finally, substitute equation (B15) into equation (B13a) to obtain

5u'----l(2 e°s' x--sin' x c°s' x--_ 1+cose°Sxx]'_A"U°A. (B16)





APPENDIX C

SAMPLE CASE OF APPLICATION OF CORRECTIONS TO TEST DATA

Assume the following characteristics of the small
model and the closed wind tunnel:

S----8 sq it

Am----10 sq ft
_l----2

• Am 10 sq ft
At= 100 sq ft; _hereforc, _--_----_----0.100

-r=l:5

_'=1.0

_=1.0

The test is conducted under standard atmos-

pheric conditions with the following conditions
and results:

Cr=10

V=25 ft/see; therefore, q=0.743 lb/sq ft
a=30.0 °
L= 125.0 lb

D=--30.0 lb for which all estimated vtdue

of D_=--35.0 lb is obtained

The following steps are then followed in the

computation of this sample case:

D_ --35.0 lb
(1) T=_ =-o.28o

(2) From equation (35)

(3)

__/ 125.0 lb2(0.002378 slug/cu ft) (10 sq ft)

=-51.3 ft/sec

V 25.0. ft/sec 0 487
=-

(4) From figure 6

V V/wn --0.487 o ._._._
(5) ....

(6) From figure 7

X=39.7 °

(7) From figure 10(b)

_.,_= --0.87

(8) From figure ll(b)

_ ,.=0.72

(9) From figure 12(b)

$,.D=--0.66

(10) From figure 13(b)

_,D=0.28

(11) From equation (44)

111,o Am�At 0.100 o 1_o
v-- o - ....

(12) From equation (45)

11I_ M_D_
Mrr ----M-r -L-= (- 0.180) (-- 0.280) = 0.0504

(13) From equation (40)

AwL M_
V =_"" _-_= (-0.87)(-0.180) =0.157

(14) From equation (41)

---V-_$,.,. ----(0.72)(--0.180)=--0.130

(15) From equation (,42)

5wD__ MM__=(_ 0.66) (0.0504) = _0.0333

48
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(16)

(17)

(18)

(19)

(20)

(21)

TECH-NICAL REPORT R--124_NATIONAL AERONAUTICS

From equation (43)

Au_ _ D--_r_( 0 28)(0'0504)=0 0141
-- "' " (23)

From equation (46)
(24)

_=_y,_ +_y,'--o.157+ (-6.0333)=0.124
v e

From equation (47)
(25)

__ffi__+____=-0.13o+o.o141=- o.116

From equation (48b)

z_a=Lan -1 Aw/V tan_t 0.124 =8.0 °

1q---_ 1 --0.116 (26)

From equation (48a)

at= ¢x_-ha=30.O ° -_-8.0 ° =38.0 °

From equation (49b) (27)

qc f Auk2. {Aw\2

_=LI+_) %9-) (28)
= 1--0.116)2+(0.124)2-----0.797

AND

(22)

SPACE ADMINISTRATION

--q_ q=0.797 (0.743 lb/sq ft) =0.592 lb/sq ft
q'-- q

V 2_, [ 2(0.592 lb/sq ft) _=22.3 ft/sec
,=¥-7=¥o.oo2378slug/__t

From equation (51a)

Cr 10 -_ -r.

From equation (50a)

L,=L cos Aa--D sin Aa

= (125.0 lb) (cos 8.0 °)- (--30.0 lb)

(sin 8,0 °) = 128.0 [b

From equation (50b)

D_=L sin AaA-D cos Aa

= (125.0 lb) (sin 8.0 °) + (--30.0 lb)

(cos 8.0 °) =- 12.3 lb

, L, 128.0 lb f_)_27.03'L.t=q--_=(0.592 lb/sq ft) (8 sq

C D, -- 12.3 lb ..... 2.60
v.,= _-_----- (0.592 lb/sq ft) (8 sq ft)



APPENDIX D

SAMPLE CALCULATION OF INTERFERENCE FACTOR FOR A FINITE WING

Ill this appendix, _.L will be computed at
y'/II=0.5 for a wing having a span-to-tunnel-
width ratio ¢ of 0.625 and operating at ×=60 ° in
a closed wind tmmel with a width-height ratio
-y of 2.0. The wing is assumed to be centered in
the wind tunnel and to have a uniform span-load

distribution, with a total lift of 2.50. For the
purposes of this calculation tile wing wake is
represented by five doublet wakes as indicated
ill figure 86. The calculation is carried out in
tabular form as follows:

Doublet wake
at ,7_

0. 50
• 75

1.00
1.25
1.50

It
for y]l//_ = 0.5

--0.5
0

.5
1.0
1.5

5
(obtainedby symmetry con-
siderationsfrom ref. 9) for--

0. 50
.75

1.00
• 75
• 50

ylH

-0. 50
0

.50
-1. 00
-1. 50

_w,L

for doublet
wake

--0.546
--.638
--. 482
--.224
--.051

Relativestrength
of doublet wake,

_L
-- As
As

O. 50
• 50
,50
. 50
. 50

-- 0. 273
--. 319
--. 241
--. 112
--. 026

Summation ............................................................ 2. 50 -0. 971

Then, with the use of equation (63),
AL

6w,,. _-_ AS --0.971

2.50_w'L= AL As .... 0.388

In order to carry out the calculation for a loading
other than uniform, it is only necessary to adjust
the column for the relative strength of doublet

AL
wake_ As to correspond to the desired loading•

45
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Figure i0.- Interference factors for vertical interference velocity due to

lift for a small model mounted in a closed wind tunnel. _ - 1.0.
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Figure Ii.- Interference factors for longitudinal interference velocity due to
lift for a small model mounted in a closed wind tunnel. _ = 1,0.
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Figure 12.- Interference factors for vertical interference velocity due to

drag for a small model mounted in a closed _ind tunnel. _ = 1.O.
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Figure 25.- Interference factors for longitudinal interference velocity due to
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Figure 26.- Interference factors for vertical interference velocltydue to
lift for correcting from a wind tunnel closed on the bottom only to
ground effect. _ = 1,0.



JET-BOUNDARY CORR_ONS AND GROUND EFFECT FOR VTOL-STOL AIRCRAFT 103

awwL

Bw, L

-I

o

f

9O

2

8n, de_)

90 BO 70 60 50 40 30

I
I

_.0.6 _ ,,.,.----"""

..,.,...._..._i_..._. _ _

/

_.!o-,I c.,o-/
_.l 5 -j _.4,o-

20 IO o

.,...... ---"

I;._o.oj

IO 20 30 40 SO 60 70 80 90

X, de9

(=) _ = z.o.

Yn_ oeg

80 70 60 50 40 30 20 I0 0

I f

jl

I _. _ I

--_--'--_ _ c.o.-__.,o-,__---_
• _ ,..-----"

_--- _ _ --_-- _ ..-.-- -"r (;.i0 0j , - _ _ r,,,40,_ , __

0 io 20 30 40 50 60 70 80 90

X, deg

(a) _ =o._.

Figure 26.- Concluded.



104 TECHNICAL REPORT R--124--NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

8u, L I

8n, deg

90 80 70 60 50 40 30

3

0 "/_

I.....--

/

/
/

/
/

_'06"-_,. /

2"
/

t-

J
(;,0.8-_

/
_;.,.oJ _.,_J

ZO I0 0

/
/

/

/

/
/

/
/

/

_'0.7 TM /

/
J

i f
i

I

/ /
r,-2o--/ C-4,o-'

-I
0 I0 20 30 40 50 60 70 80 90

X, deg

(a) 7 = 2.o.

Figure 27.- Interference factors for longitudinal interference velocity due to
lift for correcting from a wind tunnel closed on the bottom only to ground
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Figure 28.- Interference factors for vertical interference velocitM due to
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Figure 29.- Interference factors for longitudinal interference velocity due to

drag for correcting from a wind tunnel closed on the bottom only to ground

effect, q = 1.0.
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Figure 32.- Effect of wind-tunnel width-height ratio on longitudinal
distribution of vertical interference due to lift in a closed wind

tunnel. _ = 1.0; _ = 1.0.
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Figure 33.- Effect of wind-tunnel width-height ratio on the longitudinal
distribution of longitudinal interference due to lift in a closed

wind tunnel. _ = 1.03 _ = 1.0.
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Figure 34.- Effect of wind-tunnel width-height ratio on the longitudinal

distribution of vertical interference due to drag in a closed wind

tunnel. _ = 1.0; _ = 1.0.
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Figure 35.- Effect of wind-tunnel width-height ratio on the longitudinal

interference due to drag in a closed wind tunnel. _ = 1.O; _ = 1.O.
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Figure 66.- Lateral distribution of vertical interference due to lift for

laterally offset small mo_els in a closed wind tunnel. 7 = 2.0;
= 1.01 symbol denotes location of model.
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Figure 67.- Lateral distribution of lomgitudlnal interference due to

lift for small models in a closed wind tunnel, y = 2.0_ _ = 1.O;
symbol denotes location of model. (Plots for × = 0° and X = 90°

are omitted simce 5u,L is uniformly zero.)
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Figure 71.- Lateral distribution of horizontal interference due to lift for
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Figure 75.- Vertical distribution of longitudinal interference due to lift

for a small model in a closed wind tunnel. 7 = 2.0; _ = 1.0; symbol

denotes location of model. (Plot for X = 0o is omitted since 8u# L is

zero for all values of _.)
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Figure 76.- Vertical distribution of vertical interference due to drag for a

small model in a closed wind tunnel. 7 = 2.0; _ = 1.0; symbol denotes
location of model.
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Figure 83.- Correction factors for a two-element model centered in a closed
wind tunnel with 7 = 2.0. Elements are separated longitudinally by a
distance equal to H. (Curve labeled "Overall correction" is based on Am

of entire system.)
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Figure 85.- Correction factors for a two-element model in a closed wind tunnel

with 7 - 2.0. Elements are separated vertically by a distance of 0.211

vith the upper element centered in wind tunnel. (Curve labeled "Overall
correction" is based on Am of entire system.)
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5u,L is uniformly zero.)
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Figure 90.- Lateral distribution of vertical interference due to drag for a

series of finite-span uniformly loaded wlngs centered in a closed wind

tunnel with 7 = 2.0. (Plot for X = 90° is omitted since 8w,D is uni-
formly zero.)
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Figure 91.- Lateral distribution of longitudinal interference due to drag for
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Figure 94.- Basic cylindrical wake and image system used to calculate correc-

tions for a uniformly loaded rotor. Sample element of vortlclty is shown.
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Figure 9_.- Effect of finite rotor size on the vertical interference iue to
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(c) x = 26._6°.

Figure 96.- Continued.
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Figure i04.- Typical installation of semi_pan model and ground board in

17-foot test section of Langley 300-MPH 7- by lO-foot tunnel.

632643 0--62--18



262

20

16

12

CL

,8

4

0
-20

20

16

12

CL

8

4

TECHNICAL REPORT R-124--NATIONAL AF_,RONAUTICSAND SPACE ADMINISTRATION

.... l/-ft test section

-- -- --7- by lO-ft test section

I

0 20 40 -4 0

=, deg CD

(a) As teste4 at Cp = 6.20, vith no Jet-boundaa*y corrections.

/ f-1

0
-20 0 20 40 -4

=, deg

"'C/A = 7.40,A0 °¢_l"

f

1
Semispan -3.:ft-'__ 60°

Area - 3.1 sq it

I l f L__L 
0 4 8 12

CD

(b) With Jet-boundary corrections.

Figure lOT.- Tests of a svept-_rlng Jet flap model in iT-foot test section com-

paredwith those in 7- by lO-foot test section. (Uncorrected data from

fig. 9(a) of ref. 7.)
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data from fig. 6(b) of ref. 7.)
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Figure 109.-Tests of a deflected-slipstreamVTOL configuration in 17-foot
test section compared with those in 7- by lO-foot section. (Uncorrected

data from fig. 6(c) of ref. 7-)
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Figure ii0.- Tests of a _ucted-fan configuration in 17-foot test section com-

pared with those in 7- by lO-foot test section. (Uncorrected _ata from

fig. 12 of ref. 7.)
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